Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Муравьиная сложные эфиры

    Напишите структурные формулы сложных эфиров, образующихся из а) уксусной кислоты и 2-пропанола б) уксусной кислоты и 1-пропанола в) муравьиной кислоты и этанола. [c.439]

    Границы применения положительную реакцию дают муравьиная и молочная кислоты, алифатические нитросоединения. Перечисляемые ниже сложные эфиры не дают гидроксамовой реакции эфиры угольной и хлоругольной кислот, уретаны, эфиры сульфокислот, эфиры неорганических кислот. Фенолы не мешают реакции. [c.304]


    Некоторые ароматические углеводороды, спирты, жирные кислоты, сложные эфиры, галоидпроизводные (бензола, толуола, 0-, м- и п-ксилолов), декалин, диизобутилен, этанол, ацетон, муравьиная кислота, пиперидин, аргон, иод, С5з и т. д. [c.89]

    Сложные эфиры получают при взаимодействии спирта с кислотой. Названия сложных эфиров формируют по тем кислотам и спиртам, которые принимают участие в образовании пх молекул. Так, сложный эфир, образованный муравьиной кислотой и метиловым спиртом, будет называться [c.345]

    Многие сложные эфиры обладают приятным фруктовым запахом. Так, муравьиноамиловый эфир обладает запахом вишни, муравьино- [c.329]

    Без катализаторов гидролиз многих эфиров протекает очень медленно, иногда в течение нескольких лет, хотя некоторые сложные эфиры, например метиловый и этиловый эфиры муравьиной кислоты, метиловый и этиловый эфиры щавелевой кислоты, эфиры а-окси- и низших а-аминокислот и др., гидролизуются очень быстро. Скорость реакции значительно увеличивается добавками [c.529]

    Выход сложных эфиров зависит также от характера карбоновых кислот, например, увеличение константы диссоциации кислоты облегчает присоединение ее по С = С-связи. Легче всего идут реакции с муравьиной и уксусной кислотами. Двухосновные карбоновые кислоты менее активны в реакциях образования нормальных эфиров, чем одноосновные, причем активность их снижается с удлинением углеродной цепи. Ароматические кислоты активнее, чем алифатические. Скорость реакции взаимодействия карбоновых кислот с различными олефинами зависит помимо строения кислоты от времени, скорости размешивания, взаимной растворимости, растворителя, материала аппаратуры и т. д. [c.664]

    Составьте структурные формулы сложных эфиров этилового эфира муравьиной кислоты, этилового эфира уксусной кислоты, метилового эфира пропионовой кислоты, метилацетата, метилформиата, бутилаце-тата. [c.69]

    Для разделения нафтеновых и парафиновых углеводородов применяют сложные эфиры. Так например при разделении нафтенов и парафинов керосиновых фракций можно использовать метиловый эфир муравьиной кислоты, [c.14]

    Чистая муравьиная кислота представляет собой бесцветную жидкость с едким запахом, т. пл. 8°С, т. кип. 100 °С, смешивается с водой. Ее соли, сложные эфиры и амиды — обычные производные (R—NH—СНО — не альдегид, а амид муравьиной кислоты). Ангидрид и хлорангидрид муравьиной кислоты известны, но крайне нестабильны при обычных методах синтеза получается монооксид углерода. Теплая концентрированная серная кислота легко дегидратирует муравьиную кислоту, давая монооксид углерода  [c.148]


    Одним из соединений, изомерных предельной одноосновной кислоте, может быть сложный эфир, при этом по условию задачи исключается эфир муравьиной кислоты. Предположим, что кислоты, и соответственно сложного эфира в смеси содержится по х молей, а атомов углерода в каждой молекуле этих соединений — п. При взаимодействии исходной смеси с раствором бикарбоната (уравнение 1) образуется X молей СОг, а при сожжении всей смеси объем образовавшегося СОг будет равен 2пх (уравнения 2, 3). [c.213]

    Муравьиная кислота со спиртом А образует сложный эфир — соединение Б (уравнение 1). 23 г муравьиной кислоты составляют 0,5 моля. Поскольку выход сложного эфира Б по условию задачи — 80%, то [c.214]

    Новые методы выделения изобутилена из различных углеводородных фракций С4 так же, как сернокислотный и на ионообменных смолах, основаны на повышенной реакционной способности третичного атома углерода. Изобутилен способен легко образовывать сложные эфиры с органическими кислотами. Это свойство изобутилена используется при выделении его с помощью муравьиной кислоты  [c.224]

    Эти ортоэфиры устойчивы в щелочной среде, но в присутствии кислоты быстро реагируют с водой, давая обычный сложный эфир муравьиной кислоты н+ [c.67]

    При нагревании смеси -муравьиной и уксусной кислот массой 13,6 г с избытком этанола в присутствии концентрированной серной кислоты получили смесь сложных эфиров массой 20,6 г. Какая масса муравьиной кислоты вступила в реакцию Ответ 4,6 г. [c.283]

    Общая формула сложных эфиров н с—О—R, где К и К —углеводородные радикалы. Сложные эфиры можно рассматривать как производные кислот, у которых водород в гидроксиле замещен на радикал. Однако в сложных эфирах муравьиной кислоты вместо радикала К стоит атом водорода. [c.329]

    Присутствуют также и соответствующие спирты, поскольку альдегиды медленно гидрогенизуются. Основными причинами низких выходов являются, однако, конденсация альдегидов и спиртов (кротонизация, ацетализация) [20] и образование сложных эфиров муравьиной и карбоновой кислот по реакции [c.195]

    При циркуляционной смазке, когда одна и та же порция масла вновь и вновь прокачивается через нагретые узлы трения и находится там в тонком слое, в масле постепенно накапливаются самые разнообразные продукты окисления, окислительной полимеризации и конденсации. К ним относятся жирные и нафтеновые кислоты (от муравьиной до высокомолекулярных с числом углеродных атомов выше 20), оксикислоты, непредельные кислоты, фенолы, альдегиды, кетоны, сложные эфиры (лаптопы, лактиды, эстолиды) и смолистые высокомолекулярные вещества (асфальтены, асфальтогеновые кислоты и карбены). Образование и накопление всех этих веществ вызывает весьма вредные последствия усиление коррозии, выпадение осадков (шлама), нагаро- и лакообразование. [c.193]

    Аллиловый спирт находится в подсмольной воде, получающейся при сухой перегонке дерева. Он может быть получен нагреванием глицерина с муравьиной или щавелевой кислотой. При этом промежуточно образуется сложный эфир, который при нагревании разлагается с выделением углекислого газа  [c.166]

    Выделить жирные кислоты из реакционной смеси довольно трудно. Существует несколько епссобов. Сначала экстрагируют теплой водой низшие кислоты (муравьиную, уксусную, проиионовую), затем омыляют оставшиеся кислоты и гидролизуют сложные эфиры и лактогы щелочами под давлением при 150 °С. Из продуктов гидролиза Еыделяют отстаиванием и возвращают в сырье неомыляемую фракцию — верхний слой нижний представляет собой водный раствор мыл, в котором кроме натровых солей жирных кислот содержатся соли оксикислот, а также спирты, кетоны и растворенные парафиновые углеводороды. При нагревании раствора (300—350°С и 80—120 ат) в трубчатой печи происходит дегидратация оксикислот с образованием ненасыщенных кислот [c.155]

    Например, продуктами гидроформилирования пропена, кроме С -альдегидов и спиртов (н- и зо-бутилового), являются С5-СОЛИ или эфиры муравьиной кислоты, Св-сложные эфиры, альдегиды или спирты, Св-простые эфиры, Сд- эфироальдегиды и эфироспирты и, возможно, (З з-ацетали, образованные путем следующих реакций  [c.195]

    Эта связь вполне понятна в свете изложенных выше исследований, констатировавших зависимость детонационной волны горения от реакций окисления п образования перекисей. Повидимому, реакции, предшествующие образованию холодных пламен, при низких температурах и давлениях имеют ту же природу, что и реакции, идущие при высоких температурах и давлениях перед возникновением детонации в моторе. Холодные пламена в смесях углеводородов с кислородом или воздухом, как следует из работ М. Б. Неймана с сотр., могут быть исполь-юваны и промышленностью органического синтеза для получения больших количеств альдегидов, кислот, спиртов и т. д. Продукты окисления в холодном пламени сложной смеси углеводородов моторного топлива СК были исследованы А. Д. Петровым, Е. Б. Соколовой и ]М. С. Федотовым [23]. Ими были идентифицированы и количественно определены разнообразные кислородсодержащие соединения (кислоты, альдегиды, сложные эфиры, спирты, ацетали, кетоны), находящиеся I водном слое. Установлено, что среди продуктов окисления альдегидов (муравьиного и уксусного) и спиртов (метилового и этилового), образующихся, очевидно, путем распада первичных продуктов окисления, преобладают перекиси газообразных углеводородов — продуктов крекинга углеводородов моторного топлива. [c.345]


    Согласно Баруэллу [13], пунктом первоначальной атаки кислорода является положение 2 в цепи парафина затем атаке подвергается атом углерода в положении 3 и т. д. по направлению к середине цепи. Двуосновные кислоты образуются только в виде следов. Из низших кислот в основном получаются муравьиная и уксусная. Одновременно (или в последующей стадии реакции) кислород воздействует на Другие части молекулы, а поэтому наряду с простыми жирными кислотами с длинной цепью образуются также кето- и оксикислоты, лактоны и сложные эфиры оксикислот. Первые ступени окисления можно, таким образом, представить в виде следующей схемы  [c.73]

    Карбоновые кислоты встречаются в природе в свободном состоянии (например, муравьиная кислота — в крапиве, фруктах изо-валериановая — в валериановом корне и т. д.), а также в виде их производных, в основном, в виде сложных эфиров. Однако основным псточником получения карбоновых кислот является органический синтез. Их можно получать следующими способами. [c.141]

    Наиболее широко используются металлоорганические соединения — R—Li, R—Na, R—MeHal(Me — Mg, Zn, d), восстанавливающие альдегиды, кетоны и производные кислот, не содержащие подвижный атом водорода. На основе формальдегида получают первичные спирты другие альдегиды и эфиры муравьиной кислоты образуют вторичные, кетоны и сложные эфиры — третичные спирты  [c.204]

    Декарбонилирование сложных эфиров и карбоновых кислот— довольно специфическая реакция. Таким образом можно декарбонилировать только некоторые кислоты муравьиную, щавелевую, триарилуксусную, а-гидрокси- и а-кетокислоты. Больщинство, но не все а-кетоэфиры можно декарбонилировать простым нагреванием. О механизмах этих реакций известно немного (см., например, [469]). Эти реакции включены в настоящую главу, так как, по крайней мере в некоторых случаях, был продемонстрирован механизм нуклеофильного замещения [470]. [c.119]

    Диапазон применимости этого метода такой же, как и реакции 10-22. И хотя ангидриды немного менее реакционноспособны, чем ацилгалогениды, их часто используют для получения сложных эфиров. В качестве катализаторов применяют кислоты, кислоты Льюиса и основания, но наиболее часто — пиридин. Катализ пиридином относится к нуклеофильному типу (см. реакцию 10-10). 4-(М,К-Диметиламино) пиридин — более активный катализатор, чем пиридин, его можно использовать в тех случаях, когда последний малоэффективен (см. обзоры [520]). Муравьиный ангидрид — неустойчивое соединение, но эфиры муравьиной кислоты можно приготовить, действуя на спирты [521] или фенолы [522] смешанным ангидридом муравьиной и уксусной кислоты. Реакция циклических ангидридов приводит к моноэтерифицированным дикарбоновым кислотам, например  [c.126]

    При обработке сложных эфиров кетонами 3-дикетоны получаются по реакции, которая по существу не отличается от реакции 10-111. Эти реакции настолько схожи, что обсуждаемое превращение также иногда называют конденсацией Кляйзена, хотя этот термин в данном случае неудачен. Для проведения реакции требуется довольно сильное основание, например амид или гидрид натрия. Из сложных эфиров муравьиной кислоты (Р = Н) образуются fi-кeтoaльдeгиды. Этилкарбонат дает р-кетоэфиры  [c.235]

    Метановая (муравьиная) кислота НСО2Н — единственная в своем роде карбоновая кислота, не имеющая ни алкильной, ни арильной групп, соединенных с карбоксилом. Получается либо при окислении метанола или формальдегида, либо путем гидролиза сложных эфиров, циановодородной кислоты (нитрила муравьиной кислоты), а также хлороформа (разд. 4.2.1). В промышленности муравьиную кислоту получают каталитической гидратацией монооксида углерода  [c.147]

    Сложные эфиры эфиры азотистой, азотной, серной, хлорсульфоновой, муравьиной, уксусной, пропионовой, акриловой, метакриловой кислот и их г а л оге нопр оизводные. [c.166]

    В круглодонную колбу емкостью 500 мл с обратным холодильником ВЕОДят 57,5 г (1 моль) 80%-ной муравьиной кислоты, 92 г (2 моля) бсолЮ -ного этилового спир та и 41 г концентрированной серной кислоты (примечание 1) смесь нагревают на водяной бане до кипения в течение Ю часов. Обратный холодильник заменяют дефлегматором, соединенным с холодильником Либиха, и отгоняют фракцию, кипящую при 53—54° (примечание 2). Дистиллят вливают в делительную воронку и после встряхивания с 50 мл насыщенного раствора бикарбоната натрия отделяют нижний водный слой. К оставшемуся в делительной воронке верхнему слою сложного эфира приливают 500 мл насыщенного раствора поваренной соли, сильно встряхивают и после разделения слоев отделяют нижний слой раствора соли. Верхний, эфирный слой сушат над 5—6 г безводного сульфата натрия. После нескольких часов сушки жидкость фильтруют и перегоняют из перегонной колбы емкостью 200 мл, нагревая колбу на водяной бане (примечание 3). [c.357]

    Смесь 135 мл (2,3 моля) этилового спирта, 124 г (2,3 моля) 85%-ной муравьиной кислоты и 20 г хлористого кальция помещают в круглодонную колбу емкостью 500 мл, снабженную. колонкой Вигре, и медленно нагревают на водяной бане. Вскоре начинает отгоняться этиловый эфир муравьиной кислоты. Температуру водяной бани регулируг т так, чтобы обеспечить медленную и равномерную отгонку образующегося сложного эфира. Последний собирают в пределах 53—55 (примечание 2). Для дальнейшей очистки сырой продукт перегоняют над 20 г безводного карбоната калия, собирая фракцию, кипящую при 53—54°. [c.358]


Смотреть страницы где упоминается термин Муравьиная сложные эфиры: [c.252]    [c.161]    [c.530]    [c.175]    [c.229]    [c.460]    [c.387]    [c.48]    [c.259]    [c.392]    [c.392]    [c.92]    [c.343]    [c.366]    [c.158]    [c.293]   
Реакции органических соединений (1939) -- [ c.160 , c.162 ]




ПОИСК







© 2025 chem21.info Реклама на сайте