Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Триптофан окисление

    Иной путь окислительного распада наблюдается для таких аминокислот как лейцин, изолейцин, фенилаланин, тирозин и триптофан. При окислении в печени лейцина и изолейцина, начинающемся также с окислительного дезаминирования, образуется ацетоуксусная кислота. Фенилаланин окислйется вначале в тирозин, который далее подвергается своеобразному окислительному распаду также с образованием ацетоуксусной кислоты или аланина и ацетоуксусной кислоты. Приводим путь окислительного распада некоторых аминокислот. Обмен этих аминокислот может "быть связан как с реакциями цикла трикарбоновых кислот, так и с обменом жиров ( через ацетоуксусную кислоту). Схемы приведены на стр. 193, 196, 197. [c.194]


    Определение, основанное на реакции альдегидов с триптофаном [62—64]. В некоторых случаях реакция между альдегидами й аминами протекает без образования оснований Шиффа. Одним йз таких примеров является взаимодействие триптофана с альдегидами в сильнокислой среде, в результате которого получаются синие, фиолетовые или красно-фиолетовые продукты конденсации и окисления  [c.162]

    В животном организме обнаружено энзиматическое окисление триптофана в 5-окси-триптофан, из которого путем декарбоксилирования образуется 5-окситриптамин или серотонин (стр. 355). [c.374]

    Эффективным представляется использование аминокислот как пищевых добавок, имеющее двоякое значение в качестве лечебных компонентов, а также для улучшения питательной ценности пищевьгх продуктов и придания им оптимальных вкусовых свойств. Так, глутаминовая кислота, помимо фармакологического эффекта, улучшает вкус мясных продуктов, является весьма важным ингредиентом при консервировании и замораживании. Многие другие аминокислоты также улучшают вкус тех или иных пищевых продуктов. Термическая обработка пищи в присутствии таких аминокислот, как валин, метионин или глицин, приводит к получению своеобразного аромата мясных или хлебобулочных изделий. о-Триптофан во много раз слаще сахарозы и может использоваться для диабетического питания. В пищевой промышленности такие аминокислоты, как глицин, лизин, цистеин, используются в качестве антиоксидантов, стабилизирующих ряд витаминов, например аскорбиновую кислоту, и замедляющих пероксидное окисление липидов. Кроме того, будучи сладким на вкус, глицин применяется в пищевой промышленности при производстве приправ и безалкогольных напитков. [c.27]

    Триптамин и триптофан в живой природе подвергаются окислительному метаболизму. Один из путей его — деградация боковой цепи. Продукты промежуточных стадий этого процесса играют важную роль в жизни растений. При ферментативном окислении триптофана (реакция в, с. 427) образуется неустойчивый индолил-З-ацетальдегид, который быстро окисляется дальше до индолил-3-уксусной кислоты 6.382. Это вещество носит тривиальное название гетероауксин и относится к гормонам растений. Все высшие растения синтезируют метаболит 6.382 и он всегда присутствует в растительных тканях в количествах 1—100 мг/кг. Его биосинтез начинается с момента прорастания семян и продолжается в течение всей жизни растения в верхушках молодых побегов, в растущих листьях и плодах, в камбиальном слое и, вероятно, в кончиках корней. Функции индолил-3-уксусной кислоты как фитогормона многообразны. В проростках и побегах она стимулирует удлинение клеток, чем способствует ускорению роста. Синтез гетероауксина зависит от освещенности. На теневой стороне побега он менее интенсивен, в результате чего с солнечной стороны образуются более длинные [c.518]


    Хороший метод окисления триптофанов и других 3-замещенных индолов по положению 2 заключается в использовании смеси концентрированной соляной кислоты и диметилсульфоксида в результате реакции образуются оксиндолы 80 [129]. [c.277]

    При окислении альфа-аминокислот нингидрином при pH 1 образуется аммиак, двуокись углерода, восстановленный нингидрин и другие продукты. При pH выше 3 аммиак, восстановленный нингидрин и невосстановленный нингидрин образуют окрашенное в синий цвет соединение. Оно гидролизуется при pH 11 с выделением азота в виде аммиака, который затем, после аэрации, определяют реактивом Несслера. Метод применяют для определения альфа-аминного азота, хотя он дает некоторую ошибку вследствие того, что оксипролин, пролин и триптофан взаимодействуют с нингидрином при pH 1 не количественно. Из 23 исследованных альфа-аминосоединений для 14 точность результатов количественных определений находилась в пределах 5%, а для 16 соединений — в пределах +10%. [c.115]

    При кислотном гидролизе полностью разрушается триптофан, гидролизуются амидные группировки, частично разрушаются серии и треонин, происходит окисление цистина и цистеина. Для определения указанных аминокислот разработаны специальные методики [25, 73, 74]. [c.351]

    При окислении надмуравьиной кислотой триптофан разрушается, а значительная часть тирозина при последующем гидролизе НС1 превращается в хлорированный тирозин 185]. При низкой температуре окисление проходит более мягко, причем в этих условиях 2-439 [c.33]

    Биосинтез Апофермент Ь-триптофан Окисленный Ь-триптофан-Ьас- [c.76]

    Низкие величины п/ф (< 1) указывают на то, что нефти образовались из ОВ, фоссилизация которого протекала в восстановительной обстановке. В этих условиях сохранилось от окисления значительное количество полиненасыщенных кислот, давших затем арены, поэтому объяснима обратная связь п/ф с их общим содержанием. Дополнительным источником ароматических УВ в восстановительной обстановке, вероятно, мо гут служить аминокислоты, имеющие готовое ароматическое кольцо фенилаланин, тирозин и триптофан. Примечательно, что связи отношения п/ф с составом аренов, имеющих одно ароматическое кольцо (т,е. собственно с алкилбензолами), и соединений с одним и двумя нафтено выми кольцами отрицательные, а с соединениями, где два и более ароматических кольца, — положительные. Наличие подобных связей также очевидно, поскольку в восстановительной обстановке значительная часть ненасыщенных кислот гидрируется, что снижает вероятность образования полиароматических структур. Наоборот, в окислительных условиях остается немного непредельных кислот, но степень их ненасыщенности гораздо выше, что благоприятствует образованию полиароматических соединений. [c.50]

    Наряду с цистеином надмуравьиная кислота окисляет триптофан и метионин. Метионин окисляется до сульфона, продукты окисления триптофана не установлены (см. стр. 474). [c.515]

    Триптофан быстро разрушается кислотами, но не известно, происходит ли разрыв пептидной цепи по остаткам триптофана так же быстро, как разрушение боковой цепи в триптофане. При окислении триптофана надмуравьиной кислотой потребляется три атома кислорода и наблюдается потемнение реакционной смеси, но разрыва пептидной связи не происходит (см. стр. 170—171). Однако вполне возможно, что удастся разработать метод более быстрого расщепления пептидной цепи по остаткам предварительно окисленного триптофана. [c.216]

    Источником энергии, очевидно, служит сопряженная реакция окисления-восстановления. Роль донора водорода могут выполнять, например, аланин, лейцин, изолейцин, валин, серин, метионин и т.д. Акцепторами водорода могут служить глицин, пролин, аргинин, триптофан и т.д. Аминокислота-донор дезаминируется в оксокислоту, которая затем в результате окислительного декарбоксилирования превращается в жирную кислоту. Этот этап сопряжен с фосфорилированием и, таким образом, представляет собой реакцию, доставляющую энергию. Водород, перенесенный при этом на ферредоксин, снова связывается при восстановительном дезаминировании аминокислоты-акцептора. Однако не все аминокислоты используются всеми пептолитическими клостридиями. [c.298]

    Электрохимические исследования аминокислот, нуклеиновых кислот и белков непосредственно связаны между собой, поскольку первые являются структурными элементами более сложных макромолекул. Электрохимические исследования двадцати основных 1-а-аминокислот [230—232] показали, что только шесть из них — цистеин, цистин, метионин, гистидин, тирозин и триптофан — окисляются на пирографитовом и стеклоуглеродном электродах. В области pH от 1 до 10 их окисление протекает необратимо при н.и.э.>1,0 В, причем с ростом pH потенциал полуволны или максимум тока смещается в отрицательную сторону. Процессы окисления сопровождаются пассивацией электрода продуктами реакции. По данным ЯМР- и ИК-спектроскопии, продукты реакции имеют сложную полимерную структуру, что не позволяет пока перейти к детальному анализу механизма. Тем не менее полученные результаты оказались полезными при интерпретации электрохимического поведения белков, адсорбированных на графитовых электродах [245, 246]. [c.163]


    При окислении надмуравьиной кислотой остатки цистеина или цистина превращаются в стабильную цистеиновую кислоту, остаток метионина — в стабильный метионинсульфон, а тирозин и триптофан полностью разрушаются. [c.165]

    Триптофан, окислитель Продукты конденсации и окисления — VI.1 [c.331]

    З-альдегид природа второго оставалась невыясненной до 1919 г., когда Перкин и Робинзон [371 выдвинули веские доводы в пользу -карболиновой структуры гармина и гармалина. Кроме того, этим авторам удалось показать идентичность соединения Гопкинса и Коле с гарманом, полученным из гармина в результате удаления метоксильной группы. Простейшее объяснение состоит в том, что триптофан взаимодействует с альдегидом, образуя тетраГидрогарманкарбо-новую-4 кислоту (XVI), которая окисляется с одновременным декарбоксили-. рованием и дает гарман (XII). В своей статье Гопкинс и Коле указывали, что реакционную смесь после окисления экстрагировали эфиром для выделения нейтрального продукта и экстракт затем оставляли стоять в течение нескольких дней до окончательной обработки — выделения основания. Возможно, что эфир, применяемый для экстрагирования, содержал спирт, окислявшийся при стоянии [c.196]

    Предложены электроды для огфеделения суммы некоторых аминокислот (тирозин, фенилаланин, триптофан, метионин) в крови, поскольку их содержание является важным диагностическим показателем в клинических анализах. Такие датчики представляют собой катионоселективный электрод, чувствительный к образующимся при ферментативном окислении ионам аммония, на котором иммобилизован слой Ь-аминокислотной оксидазы из змеиного яда. Датчики другого типа регистрируют уменьшение активности ио-дид-ионов на поверхности электрода в результате реакций [c.216]

    При кислотном гидролизе триптофан разрушается полностью, а серии и треонин — на 5—10% разрушаются также цистин, цистеин и метионин. Из метионина получается главным образом метио-нинсульфоксид, который частично снова превращается в метионин в процессе гидролиза. Серусодержащие аминокислоты могут быть определены только в окисленных образцах (например, окисленных надмуравьиной кислотой). [c.178]

    В отличие от большинства других витаминов, которые производятся только растениями или бактериями, никотиновая кислота и ее амид синтезируются также в организме животных и грибов. Однако путь биосинтеза здесь совершенно иной. Он демонстрирует собой те случаи, когда пиридиновый гетероцикл возникает в результате окислительного расщепления бензольного ядра. Предшественником никотиновой кислоты у животных и грибов служит аминокислота триптофан. Тот же интермедиат (хинолиновая кислота) здесь образуется в результате окисления промежуточной гидроксиант-раниловой кислоты (схема 114). [c.458]

    Техника окисления серной, азотной и хлорной кислотами. Тщательно измельченный биологический материал помещают в колбу Кьельдаля емкостью 500 мл или в колбу для сжигания аппарата Бетге. Аппарат Бетге представляет собой замкнутую систему и позволяет улавливать летучие продукты окисления. К исследуемому материалу прибавляют через воронку по 25 мл концентрированной азотной и серной кислот и 35 мл 37% или 42% раствора хлорной кислоты. Окисление органических веществ ведут при постепенном усилении нагревания, добавляя при обугливании минерализата концентрированную азотную кислоту. Вскоре обугливание усиливается и над поверхностью минерализата появляются пары хлорного ангидрида. Нагревание либо прекращают, либо сильно ослабляют и продолжают окисление, добавляя по каплям 35—45% раствор азотной кислоты. Как только минерализат станет прозрачным, проверяют полноту окисления органических веществ, для чего к капле слегка охлажденного и разбавленного дистиллированной водой минерализата прибавляют 25% раствор аммиака. Если окисление прошло до конца, раствор должен окраситься в слабо желтый, но не в оранжевый цвет (реакция на наиболее трудно окисляемые аминокислоты фенилаланин, тирозин и триптофан). При наличии в минерализате хрома критерием конца минерали- [c.284]

    Вследствие возможного коммерческого использования некоторых продуктов для целей медицины необходимо было также изучить микробиологическое окисление природных соединений, содержащих индольный фрагмент. hromoba terium viola eum окисляет триптофан до 5-окситриптофана, хотя последний не был выделен, отчасти вследствие очень низкой степени превращения (значительное количество субстрата осталось неизменным) и отчасти вследствие лабильности этого оксипроизвод-ного [29]. [c.122]

    Пэтел и сотр. [69] кроме спектров миоглобина (см. разд. 14.2.4.1) исследовали также спектры водных растворов окси-и дезоксигемоглобинов в области от О до —5 т. В спектрах свободных р-цепей были обнаружены резонансные сигналы обменивающихся NH-протонов индольного кольца триптофанов Л-12 и С-3 при —0,2 и —0,5 т. Их положение фактически не зависит от степени окисления гем-групп или от ассоциации в некооперативный Р4-тетрамер. Ни для одного из состояний Р-цепей не было обнаружено сигналов в области ниже —0,6т, в отличие от миоглобина (см. предыдущий раздел). Триптофан Л-12 из а-цепей в этой области не дает сигнала обменивающегося протона. В частности, примечательно, что триптофановые остатки действительно слишком удалены от гем-группы, чтобы можно было ожидать значительных сдвигов за счет сверхтонкого взаимодействия или эффектов кольцевого тока, что согласуется с этими наблюдениями. Тем не менее спектры окси- и дезокси-форм кооперативного тетрамера (ар)г, т. е. интактного гемоглобина, заметно различаются. Было высказано предположение, что смещение пика при —2,18 т, соответствующего одному протону в спектре оксигемоглобина НЬОг, к —4,14 г при дезоксигенации указывает на перестройку четвертичной структуры, которая сопровождает это превращение (см. с. 375), или на изменение третичной структуры, связанное с этой перестройкой. [c.378]

    НОГО нами для бактерий оксигеназа разрывает индольное ядро Ь-триптофана с образованием М-формилкинуренина. Это первый фермент в процессе распада триптофана у млекопитающих и у бактерий (фиг. 25). Количество этого фермента в печени крыс можно повысить, добавляя им в пищу Ь-триптофан. Выделенный белок не проявляет ферментативной активности по отношению к Ь-триптофану, если в реакционную смесь не добавить какой-нибудь восстановитель, например аскорбиновую кислоту. Этот процесс, как было показано, состоит из двух стадий. Во-первых, неактивный фермент (апофер-мент) должен соединиться со своей простети-ческой группой, гематином, образуя голофермент. Для этой реакции необходим триптофан (или его аналог), так же как и источник гема-тина, такой, как метгемоглобин. Во-вторых, голофермент образуется в окисленной форме и должен быть восстановлен, чтобы осуществлять окисление триптофана. Для этого процесса восстановления необходим триптофан в небольших концентрациях  [c.76]

    Триптофан подвергается биохимическому окислению до индоксила, который частично всасывается и затем выделяется с мочой в виде индоксилсерной кислоты. Фенилсерная кислота, также идентифицированная в моче, является продуктом детоксикации фенола, образующегося аналогичным образом из тирозина. [c.392]

    Триптофан является довольно лабильной аминокислотой, поэтому для его частичной модификации используется ряд других методов окисление озоном [83], фотоокисление [84, 85], иодирование [86], модификация 2-нитрофенилсульфенилхлоридом (НФС-С1) и 2,4-динитрофенилсульфенилхлоридом (ДНСФ-С1) [87]. [c.357]


Смотреть страницы где упоминается термин Триптофан окисление: [c.169]    [c.351]    [c.200]    [c.138]    [c.364]    [c.170]    [c.451]    [c.178]    [c.47]    [c.51]    [c.196]    [c.196]    [c.47]    [c.51]    [c.196]    [c.400]    [c.414]    [c.504]    [c.392]    [c.282]    [c.390]    [c.259]    [c.504]   
Гетероциклические соединения Т.3 (1954) -- [ c.97 ]

Гетероциклические соединения, Том 3 (1954) -- [ c.97 ]

Основы биологической химии (1970) -- [ c.450 ]




ПОИСК





Смотрите так же термины и статьи:

Триптофан



© 2025 chem21.info Реклама на сайте