Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Другие методы определения воды

    Обзор других методов определения воды приведен в книге [7]. [c.459]

    ДРУГИЕ МЕТОДЫ ОПРЕДЕЛЕНИЯ ВОДЫ [c.11]

    При применении для титрования незначительного количества образца, получались очень точные и воспроизводимые результаты. При другом методе определения воды в пенициллине образец высушивали б—9 дней в вакууме фосфорным ангидридом, и в течение этого времени его взвешивали по меньшей мере 4 раза на микровесах [4]. Помимо того, что этот метод требовал большой затраты времени, он не давал точных результатов вследствие гигроскопичности соли. При объемном методе Леви и его сотрудников [4] анализ производился быстро и требовалось лишь около 200 мг образца (содержание 1 ампулы) количества воды до [c.232]


    Сопоставление результатов анализа методом инфракрасной спектроскопии с другими методами определения воды дает хорошие результаты (табл. 3). [c.350]

    В сильных электролитах при больших разведениях многие величины, характеризующие свойства растворенных веществ, оказываются аддитивно складывающимися из соответствующих свойств ионов. Такими величинами являются кажущийся объем соли, теплота гидратации, сжимаемость и некоторые другие. Это естественно, поскольку при полной диссоциации соли в разбавленном растворе свойства одних ионов никак не влияют на взаимодействие других ионов с растворителем. Однако представление того или иного измеренного (вернее, вычисленного по результатам измерений) термодинамического свойства растворенной соли как суммы свойств ионов этой соли и нахождение величины слагаемых этой суммы невозможно без использования какого-либо более или менее произвольного предположения. Теплоты (энергии) гидратации отдельных ионов могут быть получены из вычисленных по уравнению (XVI, 55) теплот гидратации солей, если предположить, что энергии гидратации ионов и С1 одинаковы (с учетом различия в ориентировке молекул воды около аниона и катиона) . Другой метод определения теплоты гидратации заключается в подборе аддитивных слагаемых таким образом, чтобы величины энергий сольватации ионов линейно зависели от величин, обратных радиусам ионов. Вычисленные разными способами теплоты гидратации того или другого иона полуколичественно согласуются между собой. Теплоты гидратации одновалентных ионов имеют величины по- [c.420]

    Другой метод определения антиобледенительных присадок с помощью ИК-спектрометрии заключается в снятии спектра в водной фазе после экстракции присадки из топлива водой. Эталоном служит дистиллированная вода [168]. [c.194]

    Из других методов определения гигроскопической влаги можно назвать высушивание вещества в эксикаторе. При этом надо подобрать осушающие вещества, которые характеризуются определенным давлением пара. Применение таких осушающих веществ имеет особенное значение при определении гигроскопической влаги в некоторых препаратах, содержащих также непрочно связанную гидратную воду. Далее существенно, что высушивание в эксикаторе над осушающим веществом идет при низкой температуре. Это имеет значение при высушивании веществ, легко-окисляющихся при нагревании. [c.110]


    Гравиметрические методы. Пробу анализируемого вещества нагревают и по уменьшению массы (косвенный метод) или по массе улавливаемой воды (прямой метод) можно определить ее содержание. Несмотря на простоту таких методов, при их применении возможны трудности. Прежде всего возникает вопрос, до какой температуры необходимо нагревать пробу Многие вещества теряют воду при очень высокой температуре например, кремневая кислота, гидроксид алюминия и другие материалы теряют воду при 1000 °С и выше. Кроме того, при нагревании пробы могут происходить и другие процессы. Так, удаляются или разлагаются многие летучие и органические вещества, происходит окисление многих веществ. Улетучивание и разложение соединений будет давать прибавку к массе, которая укажет на присутствие воды, а процессы окисления, наоборот, уменьшают массу, и, таким образом, получится заниженный результат. При сгорании многих органических веществ также может образоваться вода, и поэтому даже при прямом методе ее определения будут получены завышенные результаты. Поэтому гравиметрические методы определения воды весьма приближенны, и при их проведении необходимо придерживаться условий, принятых для определения того или другого вида воды. [c.636]

    Необходимым условием калориметрических методов определения воды в нефтепродуктах является способность реагента вступать в реакцию с водой с выделением достаточного количества теплоты, а также его химическая инертность по отношению к углеводородным топливам и маслам. С уменьшением содержания воды необходимо использовать реагенты с большим тепловым эффектом. Довольно большие эффекты имеют простые и комплексные гидриды, пятиокись фосфора, серная кислота и др. В качестве реагента наиболее подходит гидрид кальция, так как он по сравнению с другими доступными реагентами при взаимодействии с водой имеет наибольший энергетический эффект  [c.293]

    Другой метод определения потребления реагентов на реакцию связан с измерением количества продуктов реакции. Поясним его на примере водородно-кислородного ЭХГ, где продуктом реакции является вода, [c.421]

    В первом томе собраны химические, гравиметрические, спектральные и другие физические методы определения воды, а также методы, основанные на различных приемах фракционирования смесей. Вводная первая глава Структура и физические свойства воды содержит данные о различных состояниях воды, природе межмолекулярных взаимодействий, а также о некоторых физических свойствах воды, которые можно использовать для аналитических целей. Более подробно с этими вопросами читатели могут ознакомиться в цитированной литературе. В первом томе имеется много ссылок на работы, в которых применяется титрование реактивом Карла Фишера. Это самый распространенный метод определения воды, и поскольку используемая в нем реакция является стехиометрической, этот метод служит калибровочным для многих других методов. Калибровка имеет очень большое значение при использовании спектральных и некоторых других методов, пра- [c.6]

    Методы, основанные на потере массы образца при высушивании, являются наиболее старыми методами определения воды в нелетучих материалах. Обычно такие методы основаны а) на измерении потери массы образца после его нагревания при атмосферном или пониженном давлении или б) на измерении массы конденсированной воды, выделившейся из нагретого образца, либо массы воды, адсорбированной высушивающим агентом. В некоторых специальных случаях для определения влажности используют термогравиметрический анализ или лиофильную сушку. При выполнении термогравиметрического анализа нагревание проводят в определенном температурном режиме, что позволяет различать свободную и связанную воду. Лиофильная сушка представляет практическую ценность при частичном высушивании биологических препаратов, пищевых продуктов и других термически нестойких материалов. Для анализа специальных систем могут быть использованы также и другие гравиметрические методы. [c.69]

    В некоторых вариантах метода высушивания предусматривается поглощение удаляемой влаги какими-либо высушивающими агентами. Предварительно высушенный азот, другой инертный газ или воздух проходит над пробой при повышенной температуре и далее направляется в тарированную поглотительную трубку (обычно с перхлоратом магния или с пентоксидом фосфора). Трубку взвешивают и определяют увеличение ее массы после поглощения влаги. Увеличение массы в конце опыта является мерой содержания воды в изучаемом образце. Такая техника эксперимента, по существу, повторяет метод определения содержания водорода (и углерода) путем сжигания вещества и поглощения продуктов сгорания. Описанную схему эксперимента удобно применять и для определения влажности различных инертных газов [60]. В целом данный метод определения воды более специфичен, чем методы, основанные на оценке потери массы. Однако здесь возможны ошибки такого же типа, как и в других методах. Кроме воды могут поглощаться и другие летучие вещества. С другой стороны, вода, образующаяся при термическом разложении анализируемой пробы, также будет поглощаться, что приведет к завышенным результатам. [c.171]


    При механическом измельчении образца может выделяться количество тепла, достаточное для того, чтобы вызвать потерю значительных количеств воды. Обезвоживание при повышенных температурах может сопровождаться потерей других летучих компонентов, а также реакциями гидролиза, окисления и конденсации [221 ]. Однако при использовании метода дистилляции протекание реакции окисления менее вероятно, чем при сушке в воздушном сушильном шкафу наличие паров растворителя изолирует образец от кислорода. При использовании метода азеотропной отгонки упомянутые выше отрицательные факторы проявляются в меньшей степени, чем при сушке в сушильном шкафу и эксикаторе или поглощении влаги абсорбентами [221 ]. Дистилляцию рекомендуют [221 ] в качестве лучшего контрольного метода определения воды в пищевых продуктах. Была изучена [221 ] также термодинамика и кинетика азеотропной отгонки. В соответствии с термодинамическими представлениями при азеотропной отгонке система стремится прийти в стационарное состояние, а не в равновесное, в котором отсутствует перенос водяного пара. Было теоретически показано, что давление паров воды в перегонном аппарате обратно пропорционально растворимости воды в жидком органическом компоненте, применяемом в качестве перенос- [c.237]

    Количественные методы определения воды только путем экстракции пока не разработаны. Однако экстракция смешивающимися с водой жидкостями широко используется для удаления влаги из некоторых твердых веществ и неполярных жидкостей. Количество воды, извлеченной при экстракции, может быть найдено химическим путем или измерением каких-либо физических свойств, например плотности. В последнем случае во избежание искажения результатов измерений из пробы не должны экстрагироваться заметные количества каких-либо других компонентов. При определении влаги в экстракте химическим методом можно допустить наличие в пробе растворимых в экстрагенте веществ, не вступающих в химическое взаимодействие с применяемым реактивом. Обычно для экстракции воды из удобрений, почв, углей и гравия применяют метиловый или этиловый спирт, а также диоксан, диэтиловый эфир, ацетон и пиридин. [c.295]

    Существуют и другие методы определения жесткости природных вод (гл. XX, 4) [c.270]

    Точно определить количество свободной и связанной воды невозможно. В одном из методов определения условно свободной считают воду, которая выделяется из осадка под действием силы тяжести при длительном его фильтровании. Другой метод определения количества свободной воды, тоже условный, заключается в сушке осадка при постоянной температуре. За свободную в этом методе принимают воду, испарение которой из осадка происходит с постоянной скоростью. Нагревание осадка приводит к разрушению коллоидных структур и частичному переходу коллоидно-связанной воды в свободную, поэтому при сушке совместно определяют количество свободной воды и часть коллоидно-связанной воды. [c.137]

    Определение содержания воды в органических соединениях — одна из традиционных задач аналитической химии. Точное знание количества влаги в растворителе совершенно необходимо при изучении процессов гидратации, процессов экстракционного извлечения и при исследовании многих других вопросов химии, физики и смежных с ними наук. Быстрые и надежные методы определения влаги необходимы при контроле технологических процессов в условиях промышленного производства. И несмотря на то, что этому вопросу посвящены многочисленные работы и в Советском Союзе, и за рубежом, новые задачи, стоящие перед химической наукой, требуют новых теоретических и экспериментальных исследований, требуют разработки более экспрессных, более универсальных и надежных способов анализа. Существующие химические методы определения воды позволяют установить общее (валовое) содержание воды в органических соединениях, но не позволяют исследовать состав ассоциатов между молекулами воды и растворителя, не позволяют выяснить содержание воды в различных комплексах, образующихся в растворе. [c.185]

    Другим методом определения констант диссоциации кислот в различных растворителях можно считать эмпирический метод, например метод Грюнвальда, и др. , разработанный для смесей этиловый спирт — вода. Авторы определяли константы диссоциации кислот общего типа К2Н, взаимодействующих с растворителем 5 по схеме  [c.86]

    Другим методом определения констант является измерение возрастания растворимости в воде исследуемого вещества при различных значениях pH раствора (глава 6), Этот метод не так точен, как потенциометрический, спектрофотометрический и кондуктометрический, но бывает полезен в тех случаях (к счастью, редких), когда вещество слишком мало растворимо в воде для того, чтобы использовать потенциометрический или кондуктометрический метод, и спектр его непригоден для определения. Катализ гидролиза эфиров, дисахаридов и глюкозидов как метод измерения констант ионизации представляет лишь исторический интерес. В ряде случаев этот метод приводил к очень грубым ошибкам. [c.18]

    Как и в других методах определения фторида, описанных выше, при визуальном определении мешают вещества, которые обычно встречаются в анализируемых водах. Однако здесь допустимо присутствие несколько больших количеств наиболее часто встречающихся мешающих примесей, так как метод очень прост, а применяемый реагент сравнительно устойчив. В связи с тем, что этот метод включен в 10-е издание сборника Стандартные методы [33], а также потому, что он может быть использован для непосредственного анализа многих проб воды без предварительной дистилляции, ниже приводится его подробное описание. [c.284]

    Для некоторых газов между А Г и содержанием влаги (в пре делах от О до 0,1%) соблюдается линейное соотношение. Од нако наклоны линий будут несколько различаться для газов с раз личной теплоемкостью. Для калибровки прибора были использо ваны газовые смеси, содержащие 7% водорода 1,0% кислорода 0,7% этилена 0,6% диоксида углерода и 0,5% (об.) бутана Показано, что этим методом может быть определено даже 0,0005% (об.) БОДЫ (5 млн" ). Энгельбрехт и Дрекслер [28] применили этот метод для прямого определения свободной воды в нитрате аммония, который распыляли в токе сухого азота при комнатной температуре. Количество влаги, удаляемой азотом, определяли путем поглощения пентоксидом фосфора и сравнивали с общим содержанием воды, найденным методом Фишера оказалось, что при распылении нитрата аммония влага удаляется не полностью. Тем не менее, между содержанием влаги, найденным методом Фишера, и разностью сопротивлений термисторов выполняется линейное соотношение. Описанным методом можно достаточно надежно определить менее 0,1% воды. Энгельбрехт и Дрекслер [28] сделали заключение, что описанная техника измерений применима для определения содержания свободной воды во многих мелкораздробленных твердых материалах. Десорбция влаги потоком сухого газа может быть использована в сочетании с другими методами определения воды—абсорбционными, электрическими и физическими. [c.208]

    В paбoтe количество воды, выделяющейся при окислении пека и высококипящих фракций смолы, определяли косвенным методом — по выделению гцетилена, образующегося при взаимодействии паров воды с карбидом кальция. Установили, что количество реакционной воды, выделяющейся в единицу времени в течение всего периода термоокисления, постоянно. При этом скорость выделения воды практически одинакова при окислении и среднетемпературного пека и антраценовой фракции. Других методов определения реакционной воды при термоокислении пека в литературе не обнаружено. [c.28]

    Содержание воды. Химический метод определения воды в бутадиене, описанный Левиным и другими [49], основывается на следующем наблюдении если газ, содержащий нары воды, приходит в соприкосновение с холодным обезвоженным ацетоном, то вода задерживается ацетоном. Она может быть затем определена титрованием кислоты, освобождающейся после обработгги ацетоиа хлористым ацетилом. При определении влаги по другому методу [50] применяют раствор иода, сернистого ангидрида и пиридина в метшчовом спирте этот раствор реагирует с водой с образованием серной кислоты и подпетого водорода. Количество воды [c.40]

    Кроме описанного метода, сравнительно простого и точного, известны и другие методы определения пентозанов по фурфуролу. Колориметрический метод определения фурфурола основан на его свойстве окрашиваться в присутствии солей анилина. В основу весового метода положена реакция фурфурола с флороглюцином. Осадок фурфуро-глюцина, образовавшийся в результате реакции, отфильтровывают, промывают холодной водой и сушат до постоянной массы при температуре 97—100° С. По количеству фурфуроглюцина вычисляют содержание фурфорола и пентозанов в исследуемом веществе. [c.170]

    Харрис [64 ] описывает ряд методов определения воды в некоторых материалах. По его утверждению, абсолютное определение воды во многих смесях невозможно, особенно при проведении экспресс-анализов, например при контроле качества. Поэтому достоверность анализа становится важной проблемой в этом случае результаты анализа могут даваться в относительных единицах, приведенных к определенному стандарту. Имеется насущная необходимость установления национальных и международных стандартов, вероятно, через такие организации, как ASTM (Американское общество испытания материалов) и ISO (Международная организация стандартизации). Калибровку каждого конкретного аналитического метода следует осуществлять путем определения воды в образцах, содержащих строго определенное количество воды и являющихся устойчивыми соединениями. Такими образцами, например, могут служить соответствующие гидратированные соединения. С другой стороны, для калибровки можно использовать результаты прямого измерения термодинамических или электрических величин или других констант. Имеются многочисленные методы получения газовых смесей с заданным составом, пригодных в качестве стандартов для калибровки физических измерений, используемых для определения влажности газов. В работе Гринспена [60] (Национальное бюро стандартов) кратко описывается генератор влажности, который позволяет задавать определенное содержание воды (несколько млрд ) в воздухе и в других газах. Автот утверждает, что ему удалось измерить с точностью до 0,05 °С точку замерзания (—100 °С), что соответствует 14 млн , воды в воздухе при атмосферном давлении. Измерения возможны в интервале давлений от 500 до 200 ООО Па в широком интервале температур. Решкович и Грязина [56] обсуждают условия приготовления и хранения стандартов для определения влажности газов, а также описывают методики определе- [c.30]

    Пестон и Нимкар [233] изучали другой метод определения удерживаемой капиллярами влаги, основанный на применении гидростатического разрежения. Непрочно связанную воду выделяют из пробы волокна с помощью пористой пластинки. Такой метод ранее был использован для определения влажности почвы [135]. Необходимый для этого прибор (рис. 5-16) представляет собой фильтр с пористой стеклянной пластинкой, соединенный с заполненной ртутью уравнительной склянкой. На пористую пластинку фильтра помещают изучаемые волокна. Для предотвращения испарения влаги фильтр закрывают крышкой. С помощью уравнительной склянки уровень ртути в колене можно устанавливать на любой высоте, что позволяет изменять гидростатическое разрежение. Форма кривой зависимости количества удерживаемой в капиллярах влаги от гидростатического разрежения одинакова для всех изученных волокон, тогда как истинное содержание воды изменялось в довольно широких пределах. Для большинства проб количество влаги (в %), удерживаемое при разрежении 300 мм рт. ст., примерно равно содержанию воды, найденному при центрифугировании (1000 , 5 мин) (табл. 5-10).  [c.294]

    Соли кобальта могут взаимодействовать и с другими веществами, например с аминами, спиртами, кето-намн, тетрагидрофураном, каждое из которых способно влиять на максимум поглощения раствора. Поэтому для точного определения максимума поглощения любым колориметрическим методом определения воды необходимо построение градуировочного графика с использованием системы, в которой будет проведенХанализ. Метод может быть применен только в том случае, если концентрации всех компонентов раствора, за исключением воды, совершенно не изменяются. Необходимость выполнения этого требования станет понятной из дальнейшего [c.346]

    Умягчение воды достигается прямым удалением кальция и магния. Эта задача сходна с задачей удаления тяжелых металлов. Применяемые мембраны обычно задерживают 50-80% хлорида натрия и 99% сульфатов, хлоридов и бикарбонатов кальция и магния, Мембранные процессы по сравнению с другими методами умяг чения воды обладают определенным преимуществом. При умягчении БОДЫ натронной известью или ионообменным методом образуются значительные количества отходов. В первом случае образуется шлам из карбоната кальция и гидроокиси магния, обезвоживание и ликвидация которого составляют трудную задачу. Во втором случае при регенерации ионообменного материала образуются потоки с высоким содержанием твердых веществ, обработка которых перед сбро-сом также составляет сложную задачу. Концентрированные потоки, образующиеся при умягчении воды методом обратного осмоса, не содержат взвешенных частиц, а если и содержат, то избавиться от них обычно гораздо легче, чем от отходов двух других методов умягчения воды. [c.293]

    Сведений об эффективности применяемых способов очистки воды от пестицидов очень мало. Это обусловлено пренаде всего трудностями определения малых концентраций ядохимикатов. Однако имеющихся данных достаточно для того, чтобы сделать вывод о довольно высокой эффективности коагулирования но сравнению с другими методами обработки воды, например окислительными. Как показали Робек и др. [129], двукратное хлорирование воды и добавление перманганата калия не дают результатов. Лишь озон в высоких концентрациях (35—38 мг л) снижает содержание пестицидов примерно наполовину. В то же время применение коагуляции с последующим фильтрованием воды обеспечило уменьшение концентрации линдана (гексахлорана) на 10, алдрина — на 35, дилдрина — на 55, бутоксиэтилового эфира — на 65, паратиона — на 80 и ДДТ — на 98%. Сходные результаты по перечисленным пестицидам получены в другой работе [130]. [c.226]

    Другой группой методов определения воды являются химические методы. Старейший из них — ацетиленовый метод. Он использует реакцию между карбидом кальция и водой, находящейся в пробе. По количеству выделившегося ацетилена рассчитывают содержание влаги. На этом же принципе основан гидридкаль-циевый метод определения воды. Методы требуют большой точности выполнения. [c.128]

    Н. Н. Лапшевым (по Н. Ф. Федорову и С. М. Шифрину) разработан другой метод определения степени разбавления сточных вод в водохранилище при глубинном выпуске на основе турбулентного смешения затопленной струи с учетом ряда гидрологических особенностей водоема и вертикального размещения выпуска. [c.111]

    Прямая потенциометрия находит применение при определения pH растворов, а также многих ионов с использованием ноносв лективных электродов. В анализе природных вод и питьевой во Ы ионоселективные электроды применяют для определения кадмия меди, свинца, серебра, щелочных металлов, бромид-, хлорид- цианид-, фторид-, иодид- и сульфид-ионов . Применению этил электродов препятствует большое число мешающих влияний, по этому в анализе сточных вод ими рекомендуется пользоваться с осторожностью, постоянно сверяя получаемые результаты с ре зультатами других методов определения. [c.18]

    Интересный пример больших возможностей реактива Фишера дают методы определения воды в белой [162] и красной [163] дымящей азотной кислоте, содержащей избыточные количества двуокиси азота. Решение этой задачи классическим методом заключается в том, что вначале определяют содержание отдельных компонентов по известным методикам (HNO3 — титрованием щелочью, а NO2 — це-риметрически) и количество воды находят по разности. Согласно авторам [162] влажность белой дымящей азотной кислоты можно определить по Фишеру следующим образом. Образец кислоты осторожно нейтрализуют избытком смеси (примерно 10 см ) пиридин — диметилформамид и далее прибавляют известное количество реактива Фишера, превышающее содержание воды. Избыток реактива обратно титруют стандартным раствором воды в метаноле с биамперометрической индикацией конечной точки. Как видно из данных, приведенных в табл. 1.8, двуокись азота вплоть до концентрации 1,5% не мешает титрованию воды по описанному способу. Выше этой концентрации, когда белая дымящая азотная кислота становится красной, этот способ, вероятно, уже неприменим, поэтому для определения воды в такой кислоте разработан другой, более сложный вариант [163]. [c.71]

    Ббльшая основность вторичных аминов по сравнению с первичными понятна, поскольку возрастание количества метильных групп у атома должно способствовать увеличению его электронодонорных свойств, падение же основности при переходе от вторичных аминов к третичным обусловливается, очевидно, какими-то другими факторами. Полагают, что меньшая основность третичных аминов по сравнению с вторичными связана со снижением эне гии сольватации ониевого иона водой [28, 31, 32]. В связи с этим большой интерес представляют другие методы определения основности аминов. V [c.233]

    В разбавленных растворах кислот можно считать постоянным ионное произведение воды Сн+Сон =10 , Поэтому при pH<7 раствор считают кислым , и чем меньще pH, тем больше кислотность раствора. Но в водных растворах кислоты передают протон воде, и действующей частицей является rie протон, а ион гидроксония HgO+. Определение pH раабавленкых растворов не вызывает затруднений, но в концентрированных растворах усложняется. Это связано с тем, что электрохимические или другие методы определения pH дают разные результаты в зависимости от применяемого электрода, растворителя и т. д. [c.66]

    Вопрос об определении воды в ух лях привлек в Германии большее внимание, чем где-либо в другом месте, ввиду особого значения высоковла5Кных углей Центральной Европы и необходимости осуществления контроля влажности при брикетировании. В 1929 г. был объявлен конкурс на соискание премии за нахождение быстрейшего метода определения воды в бурых углях при влажности их от 5 до 25% с точностью 4-0,05%. Контрольный анализ производился методом перегонки с ксилолом. Всего было предложено около 47 различных методов. По сообщению Хирца [30], премии были прису/кдены за следующие методы  [c.19]


Смотреть страницы где упоминается термин Другие методы определения воды: [c.831]    [c.669]    [c.283]    [c.347]    [c.9]    [c.174]    [c.174]    [c.20]    [c.268]    [c.376]    [c.449]    [c.174]   
Смотреть главы в:

Акваметрия -> Другие методы определения воды




ПОИСК





Смотрите так же термины и статьи:

Другие методы



© 2025 chem21.info Реклама на сайте