Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Уксусная кислота как продукт каталитической реакции

    Каталитическое окисление в жидкой фазе имеет то преимущество перед газофазным процессом, что позволяет более точно регулировать состав конечных продуктов [60]. Та1 , при окислепии н-бутана в жидкой фазе образуется в первую очередь уксусная кислота при полном отсутствии формальдегида. При окислепии же пропана в газовой фазе, напротив, образуются главным образом пропионовый альдегид, пропиловый спирт, ацетон, уксусный альдегид, уксусная кислота, формальдегид, метиловый спирт, окись пропилена, окись этилена. При окислении н-гексана теоретически можно получить около 60 различных продуктов окисления, не считая вторичных продуктов, образующихся за счет дальнейших реакций кислородсодержащих компонентов. Метан и этан не только содержатся в значительно больших количествах в природном газе, чем пропан или бутан, но они представляют интерес и для применения в качестве исходного сырья, так как нри окислении дают продукты более простого состава. Именно сложный состав продуктов газофазного окисления был причиной того, что внедрение этого процесса в промышленную практику сильно задержалось. [c.151]


    О Впервые в промышленности винилацетат был получен в 1938 г жидкофазным способом из ацетилена и уксусной кислоты на Кусковском химзаводе. По этому методу ацетилен пропускают через уксусную кислоту, в которой растворен катализатор. В качестве катализатора используются соли ртути в присутствии минеральных и органических кислот (серная, фосфорная, сульфокислоты и др.). Основная реакция протекает при температуре 60-66 °С. В качестве побочного продукта в значительных количествах образуется этилидендиацетат. Выход же винилацетата за один проход составляет всего 3-5 %. Такой способ не нашел практического применения главным образом из-за токсичности солей ртути, сильного коррозионного действия каталитической системы и низкого выхода винилацетата. [c.468]

    Возможно также получение ацетона как побочного продукта при гомогенном окислении пропана и бутана. Ацетон образуется также при каталитическом окислении бутана воздухом по способу, используемому на заводе в г. Пампа (Тексас, США) [172, 173]. Сырьем служит 95%-ный н-бутан, содержащий 2,5% изобутана, 2,5% углеводородов с пятью атомами углерода и выше, а также пропан. Бутан окисляют воздухом в жидкой фазе под давлением 60 ат в уксуснокислой среде в присутствии ацетатов кобальта, марганца, никеля. Температура процесса ниже 400°. В числе продуктов реакции упоминаются уксусная кислота (основной продукт), ацетальдегид, метиловый спирт, ацетон и метилэтилкетон. Продукты реакции проходят через воздушный холодильник, в котором отводится до 80% тепла, выделяющегося при реакции, водяные холодильники и сепаратор, где отделяются азот и другие газы. Углеводороды возвращают в процесс, а сжатым азотом приводят в движение газовые турбины. После отгонки ацетальдегида, ацетона и метилового спирта уксусную кислоту передают на установку по получению уксусного ангидрида. Мощность завода в г. Пампа 42 500 т гсд уксусной кислоты. [c.322]

    При осуществлении синтеза жидких топлив из водяного газа Фишер [427] среди продуктов каталитических реакций обнаружил уксусную кислоту и метанол. Харди [570], исследовав несколько позднее каталитическое взаимодействие окиси углерода и метанола, пришел к выводу, что образование уксусной кислоты по реакции [c.208]


    Все сказанное выше о влиянии условий ведения процесса на выход отдельных продуктов реакции справедливо для некаталитического окисления парафиновых углеводородов в газовой фазе. Но в то же время существует процесс каталитического окисления бутана в жидкой фазе в присутствии растворителя, например уксусной кислоты, и катализаторов, как ацетат никеля, кобальта и марганца. [c.151]

    Широко исследовано применение для окисления алканов окислителей на основе переходных металлов. Обзоры по механизмам реакции с использованием в качестве окислителей марганца(VII), хрома(VI), ванадия (V), кобальта(III), марганца (III), церия (IV) и свинца (IV) опубликованы Стюартом [138] и Вибергом [139]. Окисление насыщенных углеводородов неорганическими окислителями идет в довольно жестких условиях поскольку первоначальные продукты реакции обычно более склонны к окислению, чем сами алканы, образуются значительные количества продуктов вторичного окисления. Трудно, например, окислить метиленовую группу во вторичную спиртовую группу без дальнейшего окисления в кетонную группировку в некоторых случаях условия окисления настолько жесткие, что происходит расщепление С—С-связи. Обычно удается превратить С—Н-группы в третичные спиртовые группы, однако поскольку многие третичные спирты легко дегидратируются, то, их, как правило, нельзя получить с хорошим выходом. Виберг и Фостер нашли, что окисление 3-метилгептана дихромат-ионом дает З-метилгептанол-3 с выходом 10% [140]. Низшие алканы ( i — С4) окисляются до спиртов кислородом в ацетонитриле при комнатной температуре в присутствии хлорида олова(II) при этом метан значительно менее реакционноспособен, чем этан, пропан и бутан. Использование солей Со(1П) для каталитического окисления бутана в уксусную кислоту представляет промышленный интерес. Окисление н-пентана также дает уксусную кислоту в качестве главного продукта в состав минорных продуктов входят пропановая, бутановая и пентановая кислоты. [c.155]

    Этот процесс напоминает одностадийный процесс получения ацетальдегида, только окислительно-восстановительная каталитическая система растворена в уксусной кислоте, а не в воде. Кроме того, в растворе должны присутствовать ацетаты некоторых щелочных металлов, например ацетат натрия для получения буферных растворов и галогениды этих металлов и хлористый литий для поддержания достаточной критической концентрации ионов l . (Поскольку некоторое количество С1 расходуется на образование хлорсодержащих продуктов, его следует возмещать.) Суммарную реакцию можно записать так  [c.287]

    Напишите уравнения реакций при а) действии бромной воды на этилен б) последующем кипячении образовавшегося продукта с раствором щелочи в) дальнейшем нагревании нового продукта с уксусной кислотой в присутствии каталитических количеств серной кислоты. Укажите названия промежуточных и конечных соединений. [c.165]

    Из мерника 31 уксусная кислота поступает в контактную печь, имеющую три секции испаритель уксусной кислоты 32, аммиачную печь 33 и каталитическую печь 34. Последнюю загружают кольцами Рашига и фосфорным катализатором. В испарителе поддерживают температуру 150° С. Здесь происходит процесс превращения жидкой уксусной кислоты в пар. В аммиачной печи температуру повышают до 500° С, а в каталитической печи поддерживают 300—350° С. Аммиак из баллонов 35 поступает в печь и подогревается. Таким образом, в каталитическую секцию печи поступают пары уксусной кислоты и газообразный аммиак. Продукты реакции поступают в холодильник 36, охлаждаемый рассолом, конденсируются и поступают в сборник 37 конденсат поступает в смеситель 38 для нейтрализации соляной или уксусной кислотой. Нейтрализованную массу переводят в делительную воронку 39, нижний слой сливают, а верхний подсушивают в воронке с поташом. Высушенный ацетонитрил поступает в сборник 40. [c.84]

    Различия в каталитических превращениях п-ксилола и уксусной кислоты зависят от свойств реагирующих продуктов. Так, промежуточными продуктами окисления уксусной кислоты являются неустойчивые соединения, например глиоксалевая кислота [реакция (3.22)], которая в условиях опыта термически разлагается [реакция (3.23)]  [c.107]

    Определение суммы камфена, трициклена и фенхенов в изомеризатах (2]ЭВ). в настоящее время количественный состав продуктов каталитической изомеризации пинена наиболее рационально устанавливать с помощью ГЖХ. Прежде в них определяли количество терпенов, образующих эфиры при взаимодействии с муравьиной или уксусной кислотами в присутствии катализаторов (S3B). С названными кислотами вступают в реакцию камфен, трициклен и фенхены, т. е. терпены, содержащиеся в техническом камфене, поэтому это определение часто называли также определением камфена. [c.180]


    В работе [14] изучали взаим9действие ацетата Мп как непосредственно с 5-нонаноном, так и в среде уксусной кислоты. Селективность каталитической реакции объясняется взаимодействием продуктов окисления с трехвалентным марганцем. На примере окисления индивидуальных кетонов было показано, что паль1йитат марганца ускоряет их окисление, но не оказывает заметного действия на обра1зование слож-.ных эфиров [15]. [c.90]

    Фенол легко реагирует с бутадиеном, давая с высоким выходом октадиенилфениловый эфир (35 У = ОРЬ) минорным продуктом является разветвленный изомер (36 У = ОРЬ). В качестве катализаторов для этой реакции было изучено большое число соединений палладия лучшим катализатором является, вероятно, система хлорид палладия — фенолят натрия [39]. В аналогичной реакции первичные спирты легко образуют простые эфиры. Изучено взаимодействие бутадиена с уксусной кислотой [386] эта реакция может найти применение для промышленного получения н-октанола. В соответствующих условиях удалось достичь высокой селективности образования 8-ацетокси-октадиена-1,6 (35 У = ОАс) [40]. Оптимальные результаты получены при введении в каталитическую систему фосфитов и использовании эквимольного количества амина. [c.34]

    Гипотеза образования промежуточных соединений относится к 1808 г. [63]. Клеман и Дезорм предложили ее для объяснения каталитического метода получения серной кислоты с участием окислов азота. Дёберайнер (1824) наблюдал сходство в действии окислов азота с действием платины при окислении спирта в уксусную кислоту. Геннель (1828) и Либих (1834) доказали, что этилсерная кислота была промежуточным продуктом при образовании этилового эфира. Считали, что предлагаемые исследователями гипотезы образования промеж п-очных соединений, чтобы быть приемлемыми, должны отвечать определенным требованиям 1) скорость образования и разложения промежуточных соединений должна быть больше, чем скорость некаталитической реакции 2) катализатор не должен выполнять чисто физических функций и 3) промежуточное соединение должно быть достаточно лабильно, чтобы оно могло разлагаться в условиях опыта с образованием новых продуктов. Главное возражение против гипотезы промежуточных соединений сводилось к тому, что во многих случаях промежуточные продукты, если они и получались, не могли быть выделены вследствие высоких скоростей, с которыми происходят химические изменения в катализируемых системах, а также и из-за трудности анализа лабильных промежуточных соединений. Тот факт, что соединение может быть изолировано в измененных условиях по сравнению с теми, в которых происходит каталитическая реакция, нельзя рассматривать как убедительное доказательство того, что изолированное таким образом соединение непременно является промежуточным продуктом каталитической реакции. [c.30]

    Гидрокаилиравание олефинов пероксидом водорода в присутствии каталитических количеств оксидов металлов протекает через стадию образования эпаисиооединений, что также приводит (К трамс-диолам. При проведении реакций в муравьиной и уксусной кислотах в качестве промежуточных соединений образуются пермуравьиная -или перуксусная кислота продуктами этих реакций могут быть ацетаты или формиаты транс-диолов. [c.364]

    Особый случай рассматриваемых реакций представляют авто-каталитические, например гидролиз этилацетата в водном растворе. Продукт реакции — уксусная кислота и ион водорода ускоряют реакцию. Скорость автокаталитнческой реакции вначале возрастает вследствие увеличения количества продукта, являющегося катализатором, а затем падает в результате израсходования исходных веществ. Причем если начальная концентрация катализатора и скорость некаталитической реакции малы, то реакция идет в, течение некоторого времени настолько медленно, что практи- [c.204]

    А. Терентьев, А. Кост и В. Потапов на примере N-этилани-иина. Было найдено, что реакция цианэтилирования не идет при нагревании до 180° без катализаторов и в присутствии щелочных катализаторов (о чем имеются указания в литературе Пропускание через каталитическую печь над окисью алюминия или стеклянной ватой (с различными кислыми добавками) при температурах от 200 до 400° также не приводит к цели. Хлори- тый водород, серная, уксусная кислота и уксусный ангидрид / катализиру от реакцию цианэтилирования этиланилина. В при- V сутствни уксусного ангидрида продукт реакции получается в чистом виде с выходом 70%, хотя скорость реакции в этом случае меньще, чем при пользовании кислотами. Железо и никелевые голи не мешают реакции, медный порошок (с присутствии кислых агентов) снижает выход. [c.79]

    Печь нагревают до 430—450° и через трубку пропускают ток углекислого газа, поступающего через боковой отвод В. Углекислый газ предварнтел[>но пропускается через промывную склянку с концентрированной серной кислотой с целью осушки и для определения скорости пропускания газа. В делительную воронку помещают раствор 136 г (1 мол.) фенилуксусной кислоты с т. пл. 77—79 ( Синт. орг. преп. , сб. 1, стр. 440) в 120 мл 20 г, 2 мол.) ледяной уксусной кислоты и этот раствор приливают со скоростью 12—15 капель в 1 мин. Прибавление всего количества раствора занимает 12—15 час. При этом через каталитическую трубку пропускают очень слабый ток углекислого газа (1 пузырек в 1 сек.), для того чтобы поддерживать газы в движении. После того как весь раствор прибавлен, в делительную воронку наливают 10 мл ледяной уксусной кислоты, которые также пропускают через трубку, для того чтобы вытеснить продукт реакции. Дестиллат состоит из слегка флуоресцирующей светлобурой маслянистой [c.314]

    RF [100]. Восстановление можно проводить в углеводородных растворителях. Полагают, что реакция проходит по радикальному цепному механизму. В более старых методах использовались такие восстанавливающие агенты, как натрий, амальгама алюминия, цинковая пыль, цинк-медная пара и магний. Применение магния включает образования реагента Гриньяра с последующей реакцией металлорганического соединения с водой или разбавленной кислотой. Таким путем был получен н-пентан в качестве растворителя вместо диэтилового эфира был использован ди-н-бутиловый эфир, чтобы обеспечить отделение продукта (т. кип. 36°С) от растворителя (т. кип. 141°С) перегонкой [101]. н-Гексадекан был синтезирован из Ьиодпроизводного с выходом 85% действием цинка в ледяной уксусной кислоте, содержащей сухой хлористый водород [102]. Для восстановления алкилгалогенидов используют также каталитическое гидрирование, в качестве типичного катализатора при этом применяют палладий на карбонате кальция в присутствии гидроксида калия [81а]. [c.134]

    При проведении аналогичной реакции в среде уксусной кислоты осуществляется конденсация хлорацетальдегида с гваяколом с образованием 1-(3 -метокси-4 -оксифенил)-2-хлорэтилацетата (см. стр. 54 данного сборника). В уксусном ангидриде в присутствии каталитических количеств серной кислоты реакция проходит значительно быстрее и приводит к получению продукта, ацетилированного по гидроксильным группам. [c.58]

    Хорошо кристаллизующиеся и устойчивые при комнатной температуре (в темноте) 4-нитрофениловые эфиры отличаются высокой активностью в реакциях аминолиза в диметилформамиде, N,N-димeтилaцeтaмидe и диме-тилсульфоксиде. Каталитические добавки уксусной кислоты, пивалиновой кислоты, азолов и N-гидроксисоединений ускоряют реакцию аминолиза. Отделение освобождающегося во время аминолиза 4-нитрофенола часто бывает трудным. Удаление побочны.х продуктов, особенно нежелательных при последующем гидрогеиолизе, осушествляется обычно переосаждением в системах диметилформамид — вода или диметилформамид — эфир, адсорбцией на нейтральном оксиде алюминия или образованием комплексов с пиридином (pH 6,5). [c.151]

    Современные технологические процессы получения ТФК и ДМТ основаны на реакции жидкофазного каталитического окисления -ксилола и других алкилароматических углеводородов. Реакцию окисления л- Ксилола до ТФК проводят при повышенной температуре 140—220 °С) в одну стадию в среде уксусной кислоты в присутствии металлов переменной валентности, например солей кобальта или марганца. В качестве промотора ис-гТользуют галогены, например соли брома. Выход ТФК и чистота конечного продукта определяются избирательностью применяемого катализатора, а также условиями проведения реакции. [c.9]

    По-видимому, реакция протекает по механизму последовательного электрофильного замещения атомов водорода на хлор в ароматическом кольце. Добавление каталитических количеств серной кислоты в уксусную кислоту или использование трифторуксусной кислоты заметно ускоряет протекание реакции хлорирования. При эквимолярном соотношении исходных бензодиоксациклоалканов (78 или 79) и бутилгипохлорита (11) выходы моно- и дихлорзамещенных бензодиоксациклоалканов (83, 84) или (85, 86) составляют 80, 10% и 75, 12%, соответственно, при конверсии по субстрату 60-70%. При мольном соотношении исходных реагентов (78 или 79) (И), равном 2, конверсия по бензодиоксациклоалкану возрастает до 95-98%, а выходы моно- и дизамещенных продуктов (83, 84) или (85, 86) составляют 10, 82% и 9, 81%, соответственно. Замена бутилгипохлорита (И) на этилгипохлорит (9) мало влияет на селективность протекания реакции и выходы продуктов. [c.17]

    Серная и хлорная кислоты кроме каталитического действия способствуют набуханию целлюлозы и делают ее более доступной для уксусного ангидрида. Возможно также, что кислоты вызывают слабый поверхностный гидролиз целлюлозного волокна, что также способствует проникновению ацетилирующего реагента. Хлорная кислота более активна как катализатор и не дает побочных реакций. Поэтому ее расход составляет 0,5... 1% от массы целлюлозы по сравнению с 1...10% расхода серной кислоты. Однако и тот и другой катализатор имеют свои преимущества и недостатки. Обе кислоты кроме основной реакции этерификации катализируют побочную реакцию ацетолиза целлюлозы. Поэтому ацетилирование обычно ведут при невысокой температуре (не более 50°С), в противном случае образуются не ацетаты целлюлозы, а ацетилированные продукты сольволитической деструкции. Ацетолизу помимо повышения температуры способствует увеличение количества катализатора. [c.605]

    Если озонирование заканчивается расщеплением озонида, то говорят об озонолизе. Например, при окислении 1,2,4-триоксоланов оксидом серебра, пероксидом водорода или перкислотами образуются карбоновые кислоты и/или кетоны [реакция (1)]. Восстановление тех же продуктов озонирования цинком в уксусной кислоте или их каталитическое [c.231]

    Вода, являясь неизбежным продуктом окисления углеводородов, может оказывать воздействие на кинетику и химизм происходящих реакций. В качестве растворителя в процессе окисления ксилолов (см. с. 20) используют преимущественно уксусную кислоту, содержащую от 2 до 10% воды. О концентрации последней имеются противоречивые данные. В одних случаях предлагается использовать уксусную кислоту с минимальным количеством воды и выводить реакционную воду, образующуюся в процессе окисления -ксилола, из реакционной зоны в целях исключения возможности высаждения катализатора [115]. В других работах объясняется ингибирующее действие воды при этом приводятся примеры жидкофазного окисления алкилбензолов и нафталинов, связанные с разрушением активного кобальтбромидного комплекса [116, 117]. Отмечено также [118], что торможение процесса возможно вследствие образования аквакомплексов из кобальта и воды, которые с точки зрения каталитической активности являются индифферентными и снижают таким образом концентрацию активных комплексов кобальта 119]. Кроме того, в процессе образования аква-комплексов возможна дезактивация пероксидных радикалов. [c.36]

    При окислении алкилароматических углеводородов используют и периодические, и непрерывные способы ведения процесса. Так, при жидкофазном каталитическом (Со-Мп-Вг) окислении п-ксилола в среде растворителя до терефталевой кислоты [196] используют непрерывно работающую установку с применением одного или нескольких последовательно работающих реакторов. Продолжительность пребывания (100— 260 °С, 0,3—2,5 МПа) 0,5—10 ч, выход терефталевой кислоты 90%. В периодическом процессе жидкофазного окисления о-ксилола до о-фталевой кислоты, катализированном солями кобальта и бромидами металлов при 160°С и 1,0 МПа [199], продолжительность окисления 2 ч. Выход продукта 94% (масс.). В других работах указывается, что в зависимости от условий проведения реакции продолжительность окисления п-ксилола в уксусной кислоте до терефталевой кислоты 60 мин (Со-Мп-Вг, 220°С, 2,5 МПа) [199] н 90 мин (Со-Мп-Вг, 190°С, 2,0 МПа) [201]. [c.49]

    Совершенно аналогично 2-оксипиридину, 2-аминопиридин не удалось успешно восстановить до 2-аминопиперидина. Было показано, что образующийся при этом продукт реакции, который ранее считался 2-аминопипери-дином [95], вероятно, представляет собой пентаметйлендиамин, возникающий в результате гидрогенолиза цикла [96]. При каталитическом восстановлении 2-аминопиридина в присутствии платины в смеси уксусной кислоты и уксусного ангидрида образуется, как было сообщено [97], диацетильное производное 2-аминопиперидина, однако попытки гидролиза полученного соединения привели к полимерному продукту. Каталитическое восстановление [c.496]

    Поскольку каталитическое гидрирование нитрилов широко применяется на практике, значительный интерес представляет вопрос о выходах целевых продуктов. Происходящие при гидрировании побочные реакции приводят к образованию вторичных и третичных аминов. Для подавления побочных реакций используют следующие приемы. В случае катализаторов на основе благородных металлов к реакционной смеси добавляют29-з2 кислоты. Так, гидрирование ка палладии ка активированном угле успешно проводится в присутствии хлористого водорода 29 гидрирование в присутствии палладия на сульфате б ария — в ледяной уксусной кислоте, содержащей 2% хлористого. водорода гидрирование на окиси платины — в ледяной -у ксусной кислоте, содержащей 3% концентрированной серной кислоты Ч. При гидрировании в присутствии кислот амины выделяются в виде солей. Гидрирование до аминов в сильнокислых средах на никелевых и кобальтовых катализаторах обычно не практикуется, поскольку они в этих условиях [c.348]

    Взаимодействие ароматических нитрилов с водородом в паровой фазе при 250—300 °С в присутствии катализатора, состоящего из окисей никеля и меди на кизельгуре, приводит к их гидрогено-лизу ° Так, основным продуктом восстановления п-толунит-рила и терефталонитрила является п-ксилол. Парофазное гидрирование нитрила ацетилминдальной кислоты по указанному способу при 250 °С привело к образованию этилбензола и уксусной кислоты. При повышении температуры гидрирования выход этилбензола снижается, а в продуктах реакции появляется толуол. Образованию этилбензола способствует присутствие в реакционной смеси уксусной кислоты. Этилбензол был получен также каталитическим гидрированием фенилацетонитрила в присутствии уксусной кислоты. Без кислоты образование этилбензола было незначительным 2. [c.354]

    Фенил ацетат и фенол получают с почти количественными выходами при пропускании паров бензола и уксусной кислоты в смеси с кислородом над палладием при 130—190 °С [31]. Реакция может бытб каталитической по палладию при добавлении неорганических окислителей, например К28г08 [32]. Этот метод может быть использован для различных аренов . интересно, что при этом преобладают продукты мета-замещения. Если реакция протекает как электрофильная атака палладием, то основными продуктами могут быть орто- и пара-изомеры. [c.329]

    Окисление ацетальдегида в уксусную кислоту представляет один из самых важных каталитических процессов. Каталитическое окисление ароматических углеводородов используется для приготовления малеиновой кислоты, которая применяется в качестве исходного материала для синтеза алициклических и. гетероциклических соединений. Окисление бензола в фенол — другой пример реакции окисления ароматических углеводсродсв. В промышленности фенол-готовят главным образом из каменноугольной смолы. Окисление толуола в бензальдегид является не только реакцией, идущей в одну стадир), но конечный продукт имеет преимущество над продуктом, получаемым из бензальхлорида, потому что он не содержит хлора. [c.584]

    В рассмотренных выше примерах гомогенно-каталитических реакций примесь катализатора (называемого в этом случае положительным катализатором) ускоряет реакцию. Известны также случаи, когда катализатор, не только ускоряет реакцию, но и изменяет ее направление, т. е. вызывает преимущественное образование какого-либо определенного продукта. Так, например, если продуктами окисления пропана СдНв в чистых пропано-кислородных или пропано-воздушных смесях при температурах 350° С являются вода, окись углерода, СО2, метиловый спирт СН3ОН, формальдегид НСНО и уксусный альдегид СНдСНО, кислоты, перекиси, а также продукты крекинга — пропилен СдНе, метан СН4 и водород, то в присутствии гомогенного катализатора — бромистого водорода — главным продуктом реакции, на образование которого расходуется до 70% окислившегося пропана, является ацетон (СНз)2СО [228, 284, 1279]. Кроме того, в присутствии бромистого водорода температура, при которой протекает реакция, снижается до 180—220° С. Механизм направляющего реакцию каталитического действия НВг не выяснен во всех деталях. Однако можно предполагать, что в значительной мере оно связано с реакцией образующегося в ходе окисления пропана радикала ИО- с молекулой НВг [c.36]


Смотреть страницы где упоминается термин Уксусная кислота как продукт каталитической реакции: [c.605]    [c.359]    [c.203]    [c.138]    [c.228]    [c.162]    [c.350]    [c.161]    [c.496]    [c.279]    [c.317]    [c.279]    [c.317]    [c.235]    [c.456]    [c.712]   
Возможности химии сегодня и завтра (1992) -- [ c.45 , c.50 ]




ПОИСК





Смотрите так же термины и статьи:

Каталитические реакции Реакции

Каталитические реакции Реакции каталитические

Продукты реакции

Реакции каталитические

Уксусная реакция с КМп и с КВг



© 2025 chem21.info Реклама на сайте