Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Сурьма марганцем

    Известно, что не все металлы вытесняют водород из кислот-неокислителей. Из следующего набора металлов свинец, стронций, висмут, хром, ртуть, никель, сурьма, марганец, кадмий, палладий, олово, галлий, кобальт [c.18]

    Электролиз водных растворов используется для получения таких металлов, как медь, цинк, никель, кобальт, олово, свинец, сурьма, марганец, хром, железо, кадмий, золото, серебро. Электрический метод используют для получения металлических порошков. [c.5]


    Электролиз разбавленных сернокислых растворов обеспечивает количественное выделение В1, Сё, Сг, Со, Оа, Ое, Аи, 1п, 1г, Ре, Н , Мо, N1, Рё, Р1, Ро, Не, НИ, Ag, Т1, 5п и 2п. Количественно выделяясь из раствора, мышьяк, свинец, осмий и селен не переходят полностью в катодную ртуть. Сурьма, марганец и рутений осаждаются неполностью, а остальные элементы совершенно не осаждаются из кислого раствора на ртутном катоде [8, стр. 58]. [c.339]

    Определению меди мешают свинец, железо (1П), алюминий, олово, сурьма, марганец и висмут, если они содержатся в анализируемом продукте в значительных количествах. [c.192]

    Механическое измельчение (резание, истирание, дробление) применяют для получения порошков из металлов и сплавов, обладающих повышенной хрупкостью (висмут, кремний, сурьма, марганец). Получаемые частицы порошка имеют осколочную, чешуйчатую, лепестковую формы. [c.146]

    В смолисто-асфальтеновых веществах концентрируются почти все металлы, находящиеся в нефти. При фракционировании асфальтенов и смол металлы распределяются неодинаково. Так, при фракционировании асфальтенов ванадий в большей степени переходит в неполярную часть (1,13—2,16 по сравнению с 0,58—0,6 в полярной). При хроматографировании смол было найдено,. что железо, никель, сурьма и бром преимущественно концентрируются в менее полярных, а натрий, хром, ртуть, серебро, кобальт, марганец и хлор — в более полярных фракциях [376]. Эти данные могут характеризовать комплексообразующую способность различных фракций по отношению к разным элементам. [c.172]

    Изучением металлов вначале в основном занимались геохимики [342], затем, после того как стало известно о вредном действии металлов на технологию переработки и эксплуатационные свойства топлив, ими начали заниматься химики и технологи (табл. 110). Изучение распределения микроэлементов по нефтяным фракциям также выявило определенные зависимости, важные для технологических процессов [344] (табл. 111). Например, железо, кобальт, хром, марганец, рубидий в повышенных концентрациях обнаружены во фракциях тяжелых нафтеновых нефтей. Ртуть, сурьма, скандий, наоборот, обнаружены в более высоких концентрациях в сравнительно легких метановых нефтях. Независимо от типа нефти выделены микроэлементы, для которых отмечена четкая приуроченность, с одной стороны, к легким фракциям, а с другой— к тяжелым (кобальт, хром, железо). [c.300]

    Совместное влияние примесей. Работами ряда авторов установлено, что совместное влияние двух примесей сказывается на выходе по току, ак правило, значительно сильнее, чем следовало бы ожидать исходя из предположения о независимом действии каждой примеси в отдельности. В частности, более сильным оказывается совместное действие таких примесей, как 8Ь и Со, 8Ь и Си, 8Ь и №. С другой стороны, клей и желатина уменьшают вредное действие ряда примесей, сурьма парализует действие органических примесей в электролите, марганец, благодаря образованию на аноде МпОа, обладающей адсорбционными свойствами, уменьшает вредное действие мышьяка сурьмы, меди. Поэтому, устанавливая допустимые пределы содержания в электролите той или иной примеси, необходимо учитывать это обстоятельство. [c.452]


    Большое перенапряжение водорода на ртути позволяет работать в широком диапазоне потенциалов и выделять большое число металлов, образующих амальгамы. Схема ячейки для электролиза на ртутном катоде приведена на рис. 29. Без регулирования потенциала рабочего электрода в 0,1 н. серной кислоте осаждаются железо, медь, никель, кобальт, цинк, германий, серебро, кадмий, индий, олово, хром, молибден, свинец, висмут, селен, теллур, ртуть, золото, платина, иридий, родий и палладий. Плохо осаждаются марганец, рутений, мышьяк и сурьма. Полностью остаются в рас- [c.59]

    Химические свойства. В сплавленном виде марганец вполне устойчив при обычных условиях, так как покрывается оксидной пленкой, предохраняющей его от дальнейшего окисления. В мелкораздробленном виде он легко окисляется на воздухе. С алюминием, сурьмой, медью и некоторыми другими металлами образует ферромагнитные сплавы. [c.337]

    Электролизом можно выделить индий в амальгаму практически полностью даже из очень разбавленных растворов. Но из-за ничтожного выхода по току затрачивается много электроэнергии. При электролизе совместно с индием переходят в амальгаму медь, олово, сурьма, свинец, кадмий, таллий и частично цинк, железо, германий, мышьяк. Большая часть мышьяка и германия восстанавливается до элементарного состояния и остается в растворе в виде взвеси марганец окисляется на аноде до двуокиси. [c.310]

    Приведем пример дробного обнаружения катионов кальция. Лучше всего его обнаружить в виде оксалата. В этом случае алюминий, хром, марганец, железо и другие катионы маскируются в виде комплексных оксалатов, легко растворимых в воде. Некоторые катионы тяжелых металлов — серебро, сурьма, ртуть, свинец, висмут не дают растворимых оксалатных комплексов, но осаждаются металлическим цинком. В раствор переходит ион цинка, не мешающий реакции на кальций и образующий комплексный оксалат. Стронции и барий не мешают реакции, так как осаждаются в виде сульфатов растворимость сульфата кальция 2,5 г/л, что позволяет уверенно обнаружить кальций в фильтрате в виде оксалата кальция после осаждения мешающих катионов. [c.133]

    Принадлежность данного сплава к определенному типу дает возможность с большой степенью достоверности предвидеть примерный его состав. Так, например, алюминиевые сплавы содержат магний, железо, кремний, титан, медь, цинк, марганец, никель и др. медные сплавы — олово, цинк, СБ1 н ц, сурьму, висмут, железо, никель, кремний, фосфор и др. [c.453]

    В бронзах олово часто заменяют другими металлами, что приводит к изменению свойств сплавов. Алюминиевые бронзы (5—10 % по массе алюминия) обладают повышенной прочностью. Очень прочны, тверды и упруги бериллиевые бронзы, массовая доля бериллия в которых составляет 2 %. Широкое применение в народном хозяйстве нашли бронзы, содержащие свинец, марганец, сурьму, железо, никель и кремний. [c.251]

    Железо Золото Кадмий Кобальт Кремний Марганец Медь Мышьяк Никель Олово Свинец Сера Серебро Сурьма Т итан [c.603]

    Висмут Железо Кальций Кремний Магний Марганец Олово Свинец Сурьма Титан [c.617]

    Максимальное Алюминий Железо Кальций Калий Кобальт Литий Марганец Медь Натрий Никель Олово Рубидий Свинец Серебро Сурьма X ром [c.631]

    Отложения с наружной стороны низкотемпературных поверхностей нагрева мазутных парогенераторов, например с пластин регенеративных воздухоподогревателей, с трубок водяных экономайзеров, содержат сернокислые соли железа, никеля, ванадия, меди и свободную серную кислоту. Коррозионные образования в трубках пароперегревателей кроме окислов железа содержат хром, марганец, молибден и другие вещества. Эти материалы отличаются исключительной стойкостью, и обычно их удается перевести в раствор лишь нагреванием в смеси серной и фосфорной кислот. Сплавление с содой, едкими щелочами, пирофосфатом или гексаметафосфатом натрня практически не приводит к разложению этого материала. Отложения из парогенераторов высокого давления содержат в различных соотношениях окислы железа и алюминия, кремниевую кислоту, фосфаты железа, алюминия и кальция, металлическую медь, а иногда соединения цинка и магния. В качестве менее существенных примесей, а иногда и следов в накипи присутствуют марганец, хром, олово, свинец, никель, молибден, титан, вольфрам, стронций, барий, сурьма, бор, ванадий и некоторые другие элементы. При обычном анализе ограничиваются определением фосфатов, кремниевой кислоты, железа, меди, алюминия, натрия, кальция, магния и сульфатов. [c.411]

    Водород, кислород, сера, хром, селен, молибден, теллур, сурьма, вольфрам, марганец, иод, бор, ванадий, ниобий, тантал [c.131]

    Табл. 1 разделена на две части. В первой указаны соединения, содержащие серу, селен и теллур, во второй — комплексы с мостиками из атомов фосфора, мышьяка, сурьмы и висмута. В каждой части таблицы комплексы переходных элементов перечислены в следующем порядке ванадий, хром, молибден, вольфрам, марганец, рений, железо, кобальт, никель, палладий и платина. [c.302]


    Многие металлы, такие, как медь, цинк, марганец, никель, кобальт, хром, железо, серебро, золото, часть промышленного выпуска олова, свинца, кадмия, висмута, сурьмы и других металлов, получают электролизом водных растворов. [c.295]

    Купферон реагирует со многими катионами, образуя труднорастворимые комплексы. Растворимость купферона-тов металлов зависит от кислотности растворов регулируя кислотность, можно провести разделение катионов. Например, в сильнокислом растворе (5—10 %-ной соляной или серной) купфероном осаждаются железо, галлий, гафний, ниобий, палладий, полоний, олово, тантал и титан частично осаждаются висмут, молибден, сурьма, вольфрам. В слабокислом растворе осаждаются висмут, медь, ртуть, молибден, олово, торий, вольфрам. В нейтральной среде осаждаются (в присутствии ацетатного буфера) серебро, алюминий, бериллий, кобальт, хром, марганец, никель, свинец, РЗЭ, таллий и цинк. Купферон дает возможность отделить железо, титан, ванадий и цирконий от алюминия, кобальта, меди, арсенита и фосфата. Его часто используют для отделения мешающих катионов, например железа при определении алюминия, а также железа и ванадия при определении фосфора в феррованадии. [c.165]

    В кислом растворе (2 н. кислота) тиоацетамид осаждает катионы IV и V аналитических групп мышьяка (III), сурьмы (III), олова (П), ртути (II), меди (П), свинца (II), серебра (I) в щелочной среде осаждаются катионы III группы алюминий (III), железо (111), хром (III), кобальт (П), никель (II), марганец (II) и цинк (11). Применяют его также для разделения катионов. [c.207]

    К числу тяжелых металлов относят хром, марганец, железо, кобальт, никель, медь, цинк, галлий, германий, молибден, кадмий, олово, сурьму, теллур, вольфрам, ртуть, таллий, свинец, висмут. Употребляемый иногда термин токсические элементы неудачен, так как любые элементы и их соединения могут стать токсичными для живых организмов при определенной концентрации и условиях окружающей среды. [c.93]

    Разумеется, что расчеты на основе данных таблицы указывают, когда произойдет полное истощение рудных запасов, если не будут приняты соответствующие меры. По значению ИИР можно выделить две группы металлов. К одной из них относятся практически все цветные и благородные металлы с ИИР>1,7% (золото, ртуть, олово, серебро, цинк, свинец, вольфрам, уран, медь, сурьма), а ко второй — черные металлы и алюминий с ИИР 1,3% (а также молибден, марганец, кобальт, никель, титан, железо, хром и калий). [c.64]

    С раствором сульфата висмута реакция не удается. Открытию висмута мешают мышьяк, сурьма, олово, трехвалентное железо и марганец. Небольшие количества кадмия не метают. При открытии висмута в присутствии меди получившийся темнобурый раствор (от соединения меди с диметилглиоксимом) нужно профильтровать и осадок промыть водой. [c.178]

    Марганец выделяет из кислых растворов солей висмута металлический висмут. Кроме висмута марганец вытесняет мышьяк, сурьму, медь, свинец, олово, железо, никель, кобальт, хром, кадмий, цинк [1069]. [c.284]

    Стоун [45] исследовал фосфаты металлов с точки зрения возможности исиользоваиия их как в качестве ингибиторов коррозии, так и в качестве защиты от образования накипи, и нашел, что прн применении этих соединений химическое регулирование кислотности водных систем может быть значительно менее строгим. Им были приготовлены и испытаны фосфаты ряда металлов, включая стронций, кальций, барий, свинец, кадмий, магний, медь, сурьму, марганец, молибден, ванадий, кремний, железо и алюминий. [c.121]

    При хлорировании смеси алюмосиликатов с коксом образуется смесь хлоридов кремния и алюминия [237, 238]. То же получается при замене кокса на древесный уголь с добавкой пйрекса [239]. В качестве катализаторов при хлорировании кремния четыреххлористым углеродом применяли медь, никель, олово, сурьму, марганец, серебро, титан [240, 241]. [c.50]

    Металлы и неорганические соединения металлов. Для катализа полиэтерификации дикарбоновых кислот гликолями используются как металлы, в том числе железо, кадмий, кобальт, свинец, цинк, сурьма, марганец, так и их соединения. Применяются также гексафторсиликаты общей формулы MSiFg, где М-металл VIII группы Периодической системы Менделеева, и щелочи и гидроксиды щелочноземельных металлов [33-34]. [c.23]

    В большинстве случаев галоидирование ускоряется под действием светового облучения (длина волны 3000—5000 А) или высокой температуры (в присутствии катализатора или без него). В качестве катализаторов обычно применяют галоидные соединения металлов, имеющих два валентных состояния, способные отдавать атомы галоидов при переходе из одного валентного состояния в другое, — P I5, P I3, Fe lg. Используют также хлористую сурьму или хлористый марганец, а также неметаллические катализаторы — иод, бром или фосфор. [c.259]

    В состав бронзы ВБ24 входят медь (основа), свинец, сурьма, фосфор в состав дюралюминия Д1Т — алюминий (основа), медь, магний, марганец и в очень небольших количествах железо, никель, цинк, кремний, титан в состав стали 12ХНЗА — железо (основа), никель, хром, марганец, кремний, углерод. [c.163]

    Вышли следующие тома т. 1, 1956 (общие сведения, воздух, вода, водород, дей-теряй, тритий, гелий и инертные газы, радон) т. 3, 1957 (главная подгруппа I группы, побочная подгруппа I группы) т. 4, 1958 (бериллий, магний, кальсий, стронций, барий) т. 7, 1959 (скандий — иттрий, редкие земли) т. 10. 1956 (азот, фосфор) т. И, 1958 (мышьяк, сурьма, висмут) т. 12, 1958 (ванадий, ниобий, тантал, протактиний) т. 14, 1959 (хром, молибден, вольфрам) т. 15, 1960 (уран и трансурановые элементы) т. 16. 19(Ю (фтор, хлор, бром, марганец) т. 18, 1959 (комплексные соединения железа, кобальта. никеля) т. 19, 1958 (рутений, осмнй, родий, иридий, палладий, платина). [c.127]

    Содержание веществ в загрязненных и нормативно-очищенных сточных подах (тонн) ванадий, висмут, кадмий, марганец, мышьяк, никель, пестициды, ртуть, свинец, серебро, сурьма, формальаегид, цианамиды и другие специфические загрязняющие вещества, характерные для данного вида производства (кг) [c.425]

    С фенилфлуороном реагируют также титан, цирконий, гафний, олово ( V), ниобий, тантал, сурьма (III), теллур, молибден, вольфрам. Окислители ванадий (V),xpoM (VI), марганец (VII) и церий (IV) окисляют реагент. Поны галлия и мышьяка в кислых раствора.ч не реагируют с фенилфлуороном. Не мешают определению фторид (<1 м-г в 10 мл) и железо (III) (100 мкг в 10 мл). [c.381]

    Большинство химических элементов являются металлами (см. рис. 53). Многие из них в силу своей химической активности находятся в природе в связанном состоянии, и поэтому до XVIII в. были известны лишь металлы, встречающиеся в самородном состоянии или легко выплавляемые из руд, такие, как золото, серебро, медь, ртуть, свинец, олово, железо и висмут (причем висмут долгое время принимали за разновидность свинца, олова или сурьмы). Использование сплава меди с оловом сыграло важную роль в развитии производительных сил общества и открыло бронзовый век . Совершенствование плавильных печей позволило производить чугун и другие сплавы железа, появление которых явилось новой вехой в создании человеком материальных ценностей. Алюминий, никель, хром, марганец, магний и другие хорошо известные теперь металлы стали получать лишь в конце XIX — начале XX в., а титан — только в середине XX в. [c.390]

    Успешная попытка систематизировать многочисленные аналитические реакции с участием соединений металлов по определенной логической схеме была осуществлена немецким химиком Генрихом Розе (1795—1864) и описана в 1829 г. в его книге Руководство по аналитической химии . Разработанная им общая схема систематического качественного анализа металлов (катионов металлов — на современном языке) основана на определенной последовательности действия химических реагентов (хлороводородная кислота, сероводород, азотная кислота, раствор аммиака и др.) на анализируемый раствор и про укты реакций компонентов этого раствора с прибавляемыми реагентами. При этом исходный анализируемый раствор в схеме Г. Розе содержал соединения многих известных к тому времени металлов серебро, рт>ть, свинец золото, сурьма, олово, мышьяк кадмий, висмут медь, железо, никель, кобальт, цинк, марганец, алюминий барий, стронций, кальций, магний. Здесь химические элементы перечислены в последовательности их разделения или открытия по схеме Г. Розе. [c.35]

    При кислотпо-щелочном методе используются свойства aлюм шия и цинка как расположенных параллельно второй диагонали. Так же расположены хром, мышьяк и олово, попадающие вместе с алюминием и цинком в 4-ю rpyrniy по кислотгю-щелочному методу. Влияние второй диагонали заметно и в группе соляной кислоты, так как золото, ртуть, таллий и свинец входят в эту группу в низших валентных состояниях (Д. Купер, 1964). Марганец и сурьма (5-я группа кислотно-щелочного метода) расположены параллельно второй диагонали. Кроме того, гидроокиси марганца (II), железа (II) и (III), сурьмы (III) и висмута (III) имеют общую формулу Н МеОз (5-я группа кислотно-щелочного метода). [c.155]

    Литий, натрий, калий, кальций, бериллий, магний, цинк, кадмий, стронций, алюминий, свинец, хром, молибден, марганец, железо, кобальт, германий, никель, медь, серебро, ртуть, олово, планша, бор, сурьма, висмут, палладий и церий в виде металлов, их окислов, гидроокисей, гидридов, формиатов, ацетатов, алкоголятов или [c.43]

    Выделенные решением Европейской экономической комис сии ООН в группу наиболее опасных (и, следовательно, приори тетных для целей наблюдения, контроля и регулирования) тя желых металлов элементы включают ртуть, свинец, кадмий хром, марганец, никель, кобальт, ванадий, медь, железо, цинк сурьму, а также типичные металлоиды мышьяк и селен. [c.244]

    Раствор должен быть очищен от более электроположительных примесей. Для очистки от железа последнее переводят сначала из FeS04 в Рез(804)з путем окисления его диоксидом марганца. После нейтрализации кислоты Рег (804)3 и АЬ (804)3 осаждаются в виде гидроксидов, которые, осаждаясь, адсорбируют соединения мышьяка и сурьмы. Электроположительные ионы выделяют из раствора цементацией цинковой пылью. Марганец, перешедший в раствор лри окислении железа, не являясь вредной примесью, окисляется на аноде до. диоксида марганца, который опять используется для -окисления железа. Очищенный от примесей раствор сульфата цинка подкисляют для увеличения электропроводности и направляют на электролиз. [c.310]

    Важное значение для получения высококачественных люминофоров имеет молярное отношение суммы вводимых металлов (Са, 8Ь, Мп) к иону Р0 . Для стехиометрического галофосфата это отношение равно 1,67. При больших значениях галофосфат не активируется, поскольку сурьма образует антимонаты кальция, а марганец — окисные соединения, в которых он имеет валентность выше 2. Поэтому во всех рецептурах указанное отношение меньше 1,67 по данным Догерти [21], оптимальная величина его равна 1,63. [c.79]

    Для определения марганца используют кристаллофосфор ЗЬзО. —Мп [141. Тетраокись сурьмы исключительно чувствительна к примеси марганца. Оранжево-красная полоса излучения (500—632—800 нм) отчетливо обнаруживается уже прн содержании 1-10 г Мн/г. Концентрационное гашение не обнарул ивается, когда концентрация достигает 3-10 г Мп/г. Марганец определяют визуальным сравнением,флуоресценции испытуемых и эталонных образцов. Сильными гасителями люминесценции SЬ20 — Мп являются Ге(П1), 2н(П), N (11), Со(П), РЬ(П), Си(П). Увеличивают яркость свечения окислы бора, фосфора и мышьяка. Определению [c.71]

    Изучено [338] отделение цинка от ряда элементов при помощи анионного обмена. 5—50 мг цинка в 2 н. НС1 полностью адсорбируются на 15-сантиметровой колонке, содержащей 3 з сильноосиовного анионита амберлит IPiA-400 (в С1-форме). При последующем пропускании 50 мл 2 н. НС1 практически весь алюминий, магний, медь, кобальт, никель, марганец, хром, трехвалентное железо, торий, цирконий, четырехвалентный титан,шестивалентный уран, бериллий и кальций находятся в элюате. Кадмий, четырехвалентное олово, трехвалентная сурьма и висмут ведут себя подобно цинку. Удерживается некоторое количество свинца и индия. Цинк, кадмий и индий элюируются водой и 0,25 н. азотной кислотой, которая также удаляет 20% олова и некоторое количество сурьмы, висмута и свинца. Если применять только воду, то на колонке упорно удерживается небольшое количество цинка. Описаны методы выделения цинка из растворов, свободных от индия и кадмия. [c.86]


Смотреть страницы где упоминается термин Сурьма марганцем: [c.125]    [c.343]    [c.291]    [c.312]    [c.519]    [c.292]   
Новые окс-методы в аналитической химии (1968) -- [ c.20 ]




ПОИСК







© 2025 chem21.info Реклама на сайте