Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Никель меди и мышьяка

    Определению молибдена роданидным методом не мешают ионы алюминия, кобальта, урана, тантала, натрия, калия, кремния, кальция, магния, титана, ванадия, хрома, марганца, никеля, цинка, мышьяка, серебра, олова, сурьмы и ртути. Соединения железа (III) и меди усиливают интенсивность окраски, вероятно, вследствие образования много-ядерных комплексов, содержащих молибден, железо (или медь) и роданид. Мешающее влияние вольфрама устраняют введением винной кислоты, препятствующей образованию роданидных комплексов вольфрама. [c.379]


    Токсичные вещества. К группе токсичных элементов относятся тяжелые металлы железо, никель, медь, свинец и цинк, а также мышьяк, сурьма, бор, алюминий, хром. [c.62]

    Определению не мешают цинк, кадмий, кобальт, никель, медь, мышьяк ( ]%), олово (-<0,1%), железо (III) (<0,05%) и небольшие количества хлорида. Мешает определению сурьма, образующая с тио-мочевиной окрашенное соединение. Влияние сурьмы устраняют введением в раствор винной кислоты. [c.377]

    Наибольшее значение в электроэкстракции цинка имеют примеси первой группы. К ним относятся кобальт, никель, сурьма, мышьяк, свинец, медь, железо, германий и др. Из этих примесей железо, кобальт и никель, выделившись на цинке, образуют участки катода с меньшим перенапряжением на них водорода, что приводит к снижению выхода по току цинка. Помимо этого, железо вызывает снижение выхода по току за счет протекания реакции окисления у анода Ре + в Ре + и восстановления у катода Ре + в Ре " . Заметное снижение выхода по току за счет окисления и восстановления железа наблюдается при содержании его свыше 300 мг/л. [c.58]

    Определение никеля, меди, мышьяка, кадмия, золота и сурьмы в теллуре [c.472]

    Длинные периоды периодической системы можно описать как короткие, в которые включено десять дополнительных элементов. Первые три элемента длинного периода между аргоном и криптоном — металлы калий, кальций и скандий —по свойствам напоминают соответствующие металлы предшествующего короткого периода — натрий, магний и алюминий. Аналогично последние четыре элемента — германий, мышьяк, селен и бром — похожи на предшествующие родственные им элементы, т. е. соответственно на кремний, фосфор, серу и хлор. Остальные элементы длинного периода — титан, ванадий, хром, марганец, железо, кобальт, никель, медь, цинк и галлий — не имеют родственных им более легких аналогов они по своим свойствам не очень похожи ни на один легкий элемент. [c.472]

    Химический анализ стали на содержание остаточных примесей (хрома, никеля, меди, мышьяка) и кремния в кипящей стали на заводе-изготовителе допускается не производить при гарантии им установленных норм. [c.137]

    Однако добавка кислоты, в особенности сильной, может изменить благоприятное для осаждения никеля соотношение концентраций (ИОНОВ водорода и никеля. Это поведет к увеличению доли участия ионов Н+ в разряде. Обычно в никелевую ванну вводят слабые, мало диссоциированные кислоты и таким образом сохраняют pH раствора в ограниченных пределах. Процесс катодного осаждения никеля очень чувствителен ik присутствию примесей в растворе. Обычные примеси в черновом (анодном) никеле — )медь и железо. Никелю всегда сопутствует кобальт. Реже встречаются цинк, мышьяк, свинец. При анодном растворении никеля эти примеси большей частью переходят в раствор. В дальнейшем они могут отлагаться на катоде, что приведет к загрязнению катодного никеля, ухудшению его структуры. Последнее сопровождается падением выхода по току. [c.385]


    Стибин SbH., также дает темное пятно с нитратом серебра, но оно исчезает при смачивании 80%-ным этанолом. Пятно от мышьяка остается и не изменяется. Обнаружению арсина мешают соли железа, кобальта, никеля, меди, серебра, ртути, образующие арсениды соответствующих металлов. Мышьяковистый водород взрывает в смеси с воздухом, как и водород. [c.203]

    Весьма удовлетворительным методом отделения ванадия от различных элементов является электролиз разбавленного сернокислого раствора с ртутным катодом (стр. 165). При этом железо, хром, кобальт, никель, медь и молибден осаждаются на ртути и отделяются таким образом от ванадия, урана, алюминия и фосфора. Мышьяк частично улетучивается, а частично остается вместе с ванадием в растворе. [c.512]

    Железо Золото Кадмий Кобальт Кремний Марганец Медь Мышьяк Никель Олово Свинец Сера Серебро Сурьма Т итан [c.603]

    Медь Мышьяк Никель Нитраты Фосфаты [c.605]

    Железо Кальций Кобальт Магний Медь Мышьяк Никель [c.620]

    Анализ нефтей и их дистиллятов показал наличие в них до десятка различных металлов, мышьяка, соединений азота и других примесей, входящих в состав сложных комплексов с высокомолекулярными углеводородными соединениями. Ванадий, никель, железо, медь, мышьяк, азот и другие примеси оказывают пагубное влияние на большинство катализаторов, применяемых при вторичных [c.15]

    Определению висмута при помощи тиомочевины не мешают до 1% цинка, кадмия, кобальта, никеля, меди и мышьяка и до 0,1% олова. [c.127]

    Определение в форме металла после выделения последнего электролизом. Наиболее распространенный способ электролитического определения — выделение кобальта из аммиачных растворов, содержащих различные добавки. Необходимо, чтобы анализируемый раствор не содержал катионов металлов, выделяющихся совместно с кобальтом. Кроме того, должны отсутствовать большие количества металлов, образующих малорастворимые гидроокиси, так как они склонны адсорбировать из раствора ионы кобальта или загрязнять осадок металла на катоде. В анализируемом растворе не должно быть солей никеля (если не предполагается определять никель совместно с кобальтом), серебра, меди, мышьяка, железа, хрома, алюминия, вольфрама, молибдена. Азотистая кислота и ее соли также должны отсутствовать, так как они замедляют или прекращают выделение кобальта [140]. [c.90]

    Вместе с кобальтом в рудах и шлаках содержатся железо, никель, медь, марганец, алюминий, кальций, магний, мышьяк, сера. Содержание железа в кобальтовых рудах колеблется от [c.175]

    Применяя радиоактивационный метод анализа, можно определять микроколичества различных элементов в морской воде редкоземельных металлов в рудах золото, платину, палладий и иридий в серебре и никеле никель, кобальт, медь, мышьяк, теллур в сурьме и т. д. [c.313]

    Определению, не мешают серебро, ртуть медь, мышьяк, сурьма, алюминий, хром, никель, кобальт и цинк в концентрациях, не пре-298 [c.298]

    Колориметрические методы позволяют определять в галлии из навесок 0,25—0,5 г серебро, железо, кобальт, никель, медь, олово, ртуть, мышьяк и кремний с чувствительностью не боле 1-10-4 2-10- % [10]. [c.201]

    Большие неприятности причиняют при эксплуатации двигателей (особенно газовых турбин) растворенные в топливе соединения ванадия, никеля, натрия, серы. Эти же соединения, а также соединения некоторых других элементов (железа, хрома, меди, мышьяка и др.), присутствуя в сырье, подвергающемся каталитической переработке, отравляют катализаторы и корродируют технологическое оборудование. Металлы, содержащиеся в топливе, ускоряют его [c.144]

    Палладий и золото частично осаждаются диметилглиоксимом из слабоаммиачных раствороЕ . Из слабокислых растворов палладий осаждается количественно, золото — частично. Как общее положение, можно принять, что перед осаждением никеля диметилглиоксимом лучше удалить из раствора элементы группы сероводорода, несмотря на то, что умеренные количества меди, мышьяка, молибдена и, вероятно, некоторых других членов этой группы не мешают осаждению. Надо помнить, что присутствующее в растворе железо перейдет после обработки сероводородом в двухвалентное состояние и его следует затем окислить, так как железо (II) в аммиачных растворах реагирует с диметилглиоксимом с образованием имеющего красный цвет соединения, что приводит к повышенным результатам, если железо присутствует в больших количествах. Кремний и вольфрам в количествах, не превышающих нескольких миллиграммов, осаждению не мешают. Если эти элементы находятся в больших количествах, то они должны быть удалены обычными способами. [c.460]

    МАРГАНЦА, МЕДИ, МЫШЬЯКА, НИКЕЛЯ, ОЛОВА, [c.241]

    Поток тепловых нейтронов составлял 1,6—2,6-10 н/см -с, быстрых — 2,6—6,5-10 н/см -с. При определении меди-64, ртути-203 введены корректирующие коэффициенты, которые учитывают мешающее влияние радиоизотопов натрия-24, калия-42, лаптапа-140, селена-75. Концентрации натрия, алюминия, серы, хлора, калия, ванадия, хрома, л<елеза, кобальта, никеля, меди, мышьяка, селена могут быть установлены с воспроизводимостью менее 10%. Значения концентраций таких элементов, как магний, цинк, молибден, сурьма, барий, ртуть, торий, часто приближаются к пределу их обнаружения. Также было исследовано влияние гомогенности образцов на воспроизводимость результатов. [c.92]


    Имеются доказательства, что при пластической деформации атомы цинка концентрируются преимущественно у границ зерен Различия в составе приводят к электрохимическому взаимодей ствию таких участков с зернами. По этой причине в ряде агрес сивных сред небольшая межкристаллитная коррозия может про исходить и без приложенного напряжения. Однако участки пла стической деформации при определенных значениях потенциала могут способствовать адсорбции комплексных ионов аммония, что в свою очередь приводит к быстрому образованию трещин. Аналогичный эффект может наблюдаться и вдоль линий скольжения (транскристаллитное растрескивание). По-видимому, выделение цинка на границах зерен является существенной причиной наблюдаемой межкристаллитной коррозии латуней в то же время наличие структурных дефектов в области границ зерен или линий скольжения играет большую роль в протекании КРН. Следовательно, разрушение медных сплавов в результате растрескивания наблюдается не только в сплавах меди с цинком, но также и со множеством других элементов, например кремнием, никелем, сурьмой, мышьяком, алюминием, фосфором [21 и бериллием [31]. [c.338]

    Все сульфиды выше упомянутых металлов лег1со растворимы в разбавленных минеральных кислотах и уксусной кислоте. ZnS не растворим в НСО2СН3, что сближает его с uS. По растворимости в кислотах их сульфиды отличаются от других сульфидов (меди, ртути, свинца, висмута, мышьяка, кадмия, сурьмы и олова), которые не растворяются в 0,3 н. НС1 и осаждаются сероводородом в кислой среде (pH<0,5). Сульфид цинка можно отделить, пользуясь формиатным буфером, от сульфидов марганца-никеля, практически полностью. Сульфиды всех других катионов этой группы осаждаются при pH 8. Сульфид цинка соосаждается с сульфидами меди, мышьяка и ртути. Групповым реагентом для катионов этой группы служит (NHi)2S, водные растворы которого гидролизуются на 99%  [c.207]

    Все это свидетельствует о необходимости широкого внедрения никель-мед-ного сплава — монеля в качестве материала для труб и облицовки корпусов конденсаторов, соприкасающихся с содержащими соляную кислоту и сероводород средами (например, нестабильный бензин), т. е. в условиях, в которых легированные мышьяком латуни ЛА-77-2 и ЛО-70-1 обнаруживают недостаточную стойкость. Применение моиеля позволит увеличить срок службы оборудования и длительность межремонтных периодов в несколько раз. [c.163]

    В самородном виде мышьяк встречается редко и в весьма незначительных количествах. Так, в ничтожно малых количествах он входит в состав животных и растительных организмов, содержится в земной коре (около 0,0005%). Чаще всего мышьяк встречается в природе в виде сернистых соединений реальгар АзгЗг, аурнпигмент АзаЗз, а также в виде соединений со многими металлами —железом, кобальтом, никелем, медью, серебром. Из них наиболее часто мышьяк встречается в виде мышьяковистого колчедана РегАзгЗа, путем прокаливания которого без доступа воздуха получают мышьяк. [c.98]

    Катализатор (типа Гудри ЗВ), содержащий платину, нанесенную на окись алюминия, изготовлялся на заводе Гудри в Пол-сборо, Нью-Джерси. Металлы, например свинец, медь, никель и мышьяк, снижают активность катализатора [26]. При работе с этим катализатором необходимо обеспечить удаление избыточных количеств воды, кпслсрода, кислородсодержащих соединений, азота и серы. Указанный катализатор обладает исключительно высокими качествами в процессах обессеривания. При исследованиях, проведенных с индивидуальными соединениями, не наблюдалось снижение дегидрогенизационной активности катализатора при содержании серы в исходном сырье до 0,2%. Сырье однократно пропускали над свежим катализатором при коротких периодах пробега установки [98]. Однако в промышленной практике (при содержании в сырье более 0,2% вес. серы) может потребоваться предварительная обработка исходного сырья или промывка рециркулирующего газа. Несмотря на непрерывность процесса, имеется возможность регенерации катализатора. Первоначальная активность и избирательность катализатора при регенерации почти полностью восстанавливаются. [c.622]

    С< при обжиге и спекании и улавливании 90 % дыма в пылесборниках 5 — уплотнение, упаковка и транспортировка колошниковой пыли б — вода 7 — измельчение 8 — серная кислота — 2 части Н2504 на I часть (по массе) Сс 9— выщелачивание для растворения С< 0 — взвесь сульфата кадмия П — фильтрование 12 — сульфат свинца на Плавку для выделения свинца, серебра и золота 3 — раствор сульфата кадмия 4 — хлорат натрия (Ре +, Ре +) — I часть на 2 части (по массе) Сс ]5 — оксид цинка — 0,75 части на 1 часть (по массе) Сс1 16 — осаждение примесей (медь, мышьяк, сурьма, железо, никель, кобальт, таллий, серебро) 17 — цинковая пыль — 1 часть на I часть (по массе) Сс) 18 — очищеииый раствор сульфата кадмия 19 — осаждение кадмия 20 — товарный раствор сульфата цинка 21 — губчатый кадмий 22 — [c.75]

    Вторая группа методов — снижение эффективности катодного или анодного процесса — может быть реализована несколькими способами. К их числу относятся мероприятия, замедляющие катодный процесс, для чего необходимо уменьшение площади макрокатодов, например путем закалки для углеродистых сталей или путем улучшения химической чистоты применяемых материалов повышение перенапряжения катодного процесса, например путем легирования сталей мышьяком, сурьмой или висмутом. Эффективность анодного процесса можно понизить введением в применяемый материал легирующих добавок, повышающих термодинамическую устойчивость анодной фазы легированием сталей никелем, никеля — медью, меди — золотом. Возможно также дополнительное легирование сплавов [c.126]

    Никель осаждается количественно из аммиачных растворов, неполностью — из слабокислых растворов и совсем не осаждается из сильнокислых растворов. (Следовательно, для количественного отделения меди от никеля необходимо лишь поддерживать достаточно высокую концентрацию кислоты.) Серьезное мешаюшее влияние при определении никеля оказывают серебро, медь, мышьяк и цинк, которые, однако, можно удалить осаждением сероводородом. Присутствие железа (II) и хрома-тов нежелательно з , они могут быть удалены осаждением в виде гидроокисей. В присутствии кобальта осаждаются оба элемента, но для количественного осаждения кобальта необходимо добавить сульфит, препятствующий образованию аминов кобальта (III). Добавление сульфита, однако, приводит к загрязнению выделившихся металлов серой. Поэтому поступают следующим образом выделившийся осадок растворяют, никель определяют по реакции с диметилглиоксимом, серу — путем осаждения ее в виде сульфата бария, а содержание кобальта находят по разности. [c.349]

    Определению не мешает присутствие серебра, ртути, меди, мышьяка, сурьмы, алюминия, хрома, никеля, кобальта и цинка в концентрациях, не превышающих двенадцатикратную концентрацию свинца. Мешающее влияние некоторых из этих элементов, если они присутствуют в пягидесятикратной концентраций, устраняют двойной экстракцией. Раствор дитизоната, полученный описанным способом, встряхивают с двумя порциями по 50 мл 1%-ной азотной кислоты. Водные экстракты, содержащие присутствующий свинец, сливают в другую делительную воронку. Слой четыреххлористого углерода промывают, взбалтывая его два раза с П01рциями по 20 мл дистиллированной воды, промывную воду прибавляют к водному экстракту. [c.141]

    Сталь группы Б подвергается термической обработке. Стали этой группы имеют перед обозначением марки букву Б, например БСтЗкп. Номер марки группы Б представляет собой число, характеризующее химический состав стали. Стандартом установлены пределы содержания углерода, марганца, кремнвя, фосфора, серы, хрома, никеля, меди и мышьяка (табл. 2.2). [c.31]

    Блок и Даме [370] при обнаружении микроэлементов в топливе применили в качестве растворов сравнения оргапометалли-ческие соединения магния, алюминия, хлора, ванадия, брома, натрия, калия, хрома, железа, кобальта, никеля, меди, цинка, молибдена, сурьмы, бария, лантана и водные растворы сравнения для скандия, мышьяка, селена, ртути, тория. Они предлагают четыре схемы анализа, которые приведены в табл. 1.21. [c.92]

    ДОМЕННЫЙ ЧУГУН - чугун, вы плавляемый в доменных печах. Используется с 14 в. Кроме железа и углерода, в Д. ч. содержатся кремний, марганец, фосфор и сера, иногда (в зависимости от состава руд) хром, никель, медь, титан, вольфрам и мышьяк, а в виде микропримесей — олово, алюминий, цинк, свинец, кобальт и кальций. Д. ч. подразделяют на передельный чугун, литейный чугун и специальный (см. Ферросплавы). Передельные Д. ч. используют для получения стали, поставляя их в сталеплавильные цехи в жидком виде. Из литейных Д. ч., поставляемых потребителям в виде чушек массой 18—20 кг, получают отливки. Специальные Д. ч. служат присадками для раскисления стали. Продувкой доменного литейного или передельного чугуна в ковшах гранулированным магнием получают рафинированный Д. ч. (табл.). Такой чугун содержит меньше серы и не-мета.глических включений. Марки, хим. состав и св-ва литейного рафинированного Д. ч. определены ГОСТом 5.1751-72. [c.405]

    СФАЛЕРИТ (от греч. афаА-ерое — обманчивый), ZnS — минерал класса сульфидов. Разности клейофан — светлоокрашенный или бесцветный сфалерит с незначительным количеством примесей м а р м а т и т (железистый сфалерит) — черный железосодержащий сфалерит пршибра-м и т — сфалерит, обогащенный (до 5%) кадмием бруикит — скрытокристаллический землистый сфалерит белого цвета. Хим. состав (%) Zn — 67,1 S — 32,9. Примеси железо (до 26%), кадмий (до 5%), марганец (до 5,8%), таллий (до 1%), ртуть (до 1%), галлий, германий (до 0,1%), индий (до 0,4%), а также кобальт, никель, медь, олово, мышьяк, висмут, свинец, серебро, селен и другие элементы. [c.487]

    Так, цинк увлекается в осадок медью, кадмиен , ртутью таллий медью, мышьяком и сурьмой, а никель и кобальт — оловом (IV). Последнее имеет также склонность увлекать в осадок железо, если осаждение проводитбя из солянокислого раствора, содержащего железо в виде Ре -ионов. / [c.84]

    Перекись водорода и перекись натрия препятствуют полному осаждению циркония на холоду при кипячении в их присутствии цирконий полностью осаждается. При осаждении гидроокиси циркония щелочами отделяются следующие элементы мюминий, галлий, цинк, молибден, вольфрам, ванадий, бериллий, мышьяк и Сурьма. В присутствии карбонатов отделяется уран. Для этой цели к щелочи прибавляют I—2 г Na Og. Прибавление перекиси водорода улучшает отделение. В осадке с цирконием находятся железо, титан, марганец, хром, кобальт, никель, медь, кадмий, серебро, индий, таллий, торий и редкоземельные элементы. Магний и щелочноземельные металлы при достаточном содержании карбонатов также полностью осаждаются. Этот метод может иметь некоторое значение для отделения циркония от молибдена, вольфрама, ванадия, алюминия и бериллия. По данным Руффа [700], бериллий не отделяется щелочью количественно, так же как и алюминий, особенно в присутствии больших количеств аммонийных солей. Осаждение гидроокиси циркония аммиаком может применяться при гравиметрическом определении циркония. Но этот метод используется лишь в случае отсутствия примесей, осаждаемых аммиаком. [c.53]


Смотреть страницы где упоминается термин Никель меди и мышьяка: [c.60]    [c.620]    [c.39]    [c.312]    [c.514]    [c.168]    [c.75]    [c.481]    [c.464]    [c.25]   
Методы химического анализа железных, титаномагнетитовых и хромовых руд (1966) -- [ c.132 ]




ПОИСК







© 2025 chem21.info Реклама на сайте