Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Вязкость растворов разбавленны

    Возрастание приведенной вязкости при разбавлении раствора полиэлектролита вызвано так называемым полиэлектролитным набуханием, т. е. увеличением объема и соответственно линейных размеров макромолекулярных клубков из-за увеличения электростатического отталкивания одноименно заряженных звеньев цепи. При разбавлении раствора полиэлектролита ионная сила раствора, создаваемая самим полиэлектролитом, уменьшается. По мере разбавления все большее число компенсирующих низкомолекулярных противоионов уходит из объема заряженного макромолекулярного клубка, образуя вокруг него диффузный слой, расширяющийся с разбавлением. Эффективный заряд макромолекул соответственно возрастает, что и приводит к дополнительному набуханию поли-электролитных клубков. Следует отметить, что удельная вязкость раствора полиэлектролита при разбавлении уменьшается. Возрас- [c.120]


    Вязкость растворов, содержащих макромолекулы, обычно выще вязкости растворов низкомолекулярных соединений и коллоидных растворов тех же концентраций. Например, у растворов каучука аномально высокая вязкость наблюдается уже при концентрациях порядка 0,05%. Только очень разбавленные растворы высокомолекулярных соединений можно считать подчиняющимися законам Ньютона и Пуазейля. Вязкость растворов высокомолекулярных веществ не подчиняется также закону Эйнштейна и возрастает с увеличением концентрации. Графически эта зависимость изображается кривой, обращенной выпуклостью к оси концентраций. [c.459]

    Зависимость удельной электрической проводимости растворов некоторых электролитов от концентрации представлена на рис. 165. В разбавленных растворах сильных и слабых электролитов рост электрической проводимости с концентрацией обусловлен увеличением количества ионов, переносящих электричество. В области концентрированных растворов повышение кон-центрации сопровождается увеличением вязкости раствора, что снижает скорость движения ионов и электрическую проводимость. Кроме того, у слабых электролитов в концентрированных растворах заметно снижается степень диссоциации и, следовательно, количество ионов, переносящих электричество. [c.459]

    Влияние концентрации полимера на вязкость их растворов. Вязкость обычных разбавленных растворов с ростом концентрации увеличивается по известному закону Эйнштейна [c.112]

    Уравнение Эйнштейна означает, что характеристическая вязкость раствора сплошных невзаимодействующих частиц (не обязательно сферических, тогда коэффициент 2,5 будет другим) определяется только плотностью вещества и не зависит от молекулярной массы и размеров частиц. Это происходит вследствие того, что масса таких частиц строго пропорциональна их объему. При этом т]пр постоянна в широком интервале концентраций, поскольку частицы предполагаются невзаимодействующими. Уравнению Эйнштейна (в первом приближении) подчиняются разбавленные растворы глобулярных белков разных молекулярных масс. Для всех этих систем [ti] са 0,04 дл/г независимо от молекулярной массы полимера. [c.99]

    Вязкость растворов полимеров. Хотя растворы полимеров представляют собой молекулярно-дисперсные системы и этим вполне соответствуют условиям истинного растворения, для них характерна исключительно высокая вязкость. Столь высокая вязкость растворов затрудняет их детальное изучение, определение теплот растворения и набухания и величины молекулярного веса полимера. Даже при большом разбавлении (0,25—0,5%) вязкость раствора полимера в 15— 5 раз превосходит вязкость растворителя. Высокая вязкость полимерных растворов обусловлена большими размерами макромолекул и их нитевидным строением. Размеры макромолекул в сотни и тысячи раз превосходят размеры молекул растворителя и обладают значительно меньшей подвижностью. Поэтому макромолекулы оказывают сильное сопротивление движению жидкости (растворителя). Сопротивление движению жидкости возрастает с увеличением длины макромолекулы и степени ее вытянутости. Клубкообразные макромолекулы быстрее перемещаются в растворителе и не столь сильно затрудняют движение молекул растворителя. Благодаря этому уменьшается коэффициент внутреннего трения, что приводит к снижению вязкости раствора. Вязкость увеличивается и с возрастанием сил межмолекулярного взаимодействия, поскольку затрудняется скольжение цепей относительно друг друга. [c.68]


    Разбавление и скорость фильтрации. На скорость фильтрации и эффективность центрифугирования разбавление сырья растворителями влияет двояко непосредственно, снижая вязкость обрабатываемого продукта, и косвенно, улучшая его микроструктуру. Если рассматривать скорость фильтрации, отнесенную ко всему отфильтрованному раствору в целом, то добавка маловязкого растворителя повысит ее при любой величине вязкости растворителя и при любой кратности разбавления. Но введение растворителя уменьшает концентрацию в фильтрате целевого масла. Поэтому при увеличении разбавления скорость фильтрации, отнесенная к целевому маслу, будет возрастать в меньшей мере, чем скорость фильтрации всего фильтрата. И при достаточно высоком разбавлении, когда вязкость раствора понизится настолько, что дальнейшее разбавление (вследствие значительного уменьшения концентрации целевого масла в фильтрате) не будет уже суш,ественно снижать вязкость, дополнительный ввод растворителя не увеличивает скорость фильтрации, а уменьшает ее. Аналитический разбор влияния разбавления на скорость фильтрации дан одним из авторов [1] для суспензий с нерастворимым осадком. Выясненные в этой работе положения действительны и для разбавления сырья при его депарафинизации. Основные из этих положений заключаются в следующем а) чем ниже вязкость растворителя, тем эффективнее его действие и тем выше наибольшая скорость фильтрации, отнесенная к целевому маслу, которая может быть достигнута при оптимальном разбавлении  [c.100]

    Зависимость содержания соли в носителе от концентрации ее в растворе представлена на рис, 51. По мере увеличения концентрации поглощаемого вещества в растворе степень адсорбции его пористым материалом стремится к определенному пределу, отвечающему насыщению носителя поглощаемым веществом. Соотношение компонентов на носителе определяется скоростью насыщения, которая зависит от коэффициента диффузии компонентов, вязкости раствора, температуры пропитки, размеров зерен носителя, его пор и удель-Рис. 51. Зависимость концен- НОЙ, поверхности. Для разбавленных трации соли в носителе (или ка- пропиточных растворов изотерм"а ад- [c.134]

    Вязкость большинства низкомолекулярных жидкостей и их смесей, а также вязкость весьма разбавленных дисперсных систем — истинных растворов, золей и суспензий — подчиняется законам Ньютона i. Пуазейля. Это значит, что коэффициент вязкости т] не зависит от скорости течения. Такие жидкости принято называть ньютоновскими. Вязкость дисперсных систем т) выше вязкости растворителя rio и зависит от концентрации дисперсной фазы. Для бесструктурных систем, подчиняющихся законам Ньютона и Пуазейля, т зависит от вязкости растворителя о и концентрации величина г выражается уравнением Эйнштейна  [c.430]

    Уменьшение сопротивления. Под уменьшением сопротивления понимают значительное снижение коэффициента трения при малых добавках определенного высокомолекулярного полимера в ньютоновскую жидкость при ее турбулентном течении в трубе. Этот э())фект виден из рис. 7, на котором показана зависимость f от Не для разных концентраций оксида полиэтилена в воде. Здесь Ке — обычное число Рейнольдса, поскольку вязкость столь сильно разбавленных растворов полимера практически не зависит от скорости сдвига. В ламинарном режиме течения добавки полимера на величину / не влияют. Правее той точки, где начинается такое влияние (Не 3000), с увеличением концентрации полимера f уменьшается. Однако существует предел, меньше которого коэффициент трения быть не может, как бы много полимера мы пи добавляли. Из рисунка видно, что добавки долей по массе оксида полиэтилена приводят к уменьшению / для воды на 40% при значении Не= 10 , в то время как вязкость раствора увеличивается по сравнению с вязкостью чистой воды всего на 1%. В табл. 7 приведены примеры некоторых других систем, в которых наблюдается аналогичное уменьшение сопротивления. Дополнительную информацию по этому вопросу можно найти в обзорах (23, 24). [c.174]

    Особенно резко проявляется влияние агрегирования в раство рах циклогексан—бензол (с уменьшающимся содержанием бен-, зола). В наименее полярных растворах, т. е. в смесях с большим преобладанием циклогексана, межмолекулярное агрегирование настолько велико, что проявляется даже в очень больших разбавлениях. Вязкость растворов в случае низкомолекулярных асфальтенов, даже при высоких концентрациях, почти не зависит от растворяющей способности растворителя. Однако в случае высокомолекулярных асфальтенов растворяющая способность растворителя приобретает особое значение. [c.199]

    Изучают зависимость вязкости раствора агар-агара от концентрации. Исходя из исходного раствора Q, путем последовательных двукратных разбавлений дистиллированной водой готовят по 20. л растворов следующих концентраций 0,5 Со, 0.25 С , 0,125 С/,. 0,0625 Со. [c.85]

    Например, Дж.Ферри относит к концентрированным также растворы полимеров, в которых отношение вязкости раствора к вязкости растворителя, т.е. т)от , больше 100. В зависимости от термодинамической гибкости макромолекул область перехода от разбавленных к концентрированным растворам составляет от долей % (мае.) - для жесткоцепных до 8-10% (мае.) - для гибкоцепных полимеров. [c.195]


    Вышеупомянутое затруднение удалось преодолеть, получив вначале натриевые или калиевые производные из 3-оксипиридина (азеотропной отгонкой воды с толуолом или бензолом), а затем проведя их взаимодействие с OS в растворе осушенного диметилсуль-фоксида, разбавленного (с целью снижения вязкости раствора) обезвоженным 1,4-диоксаном. Действием на реакционную смесь алкил-галогенидов, содержащих подвижный атом галогена, удалось получить полные S-алкиловые эфиры 0-(3-пиридил)монотиоугольных кислот, содержащих в молекуле фрагмент 3-оксипиридина. [c.66]

    Основные характеристики растворителей растворяющая способность, и способность к разбавлению, вязкость раствора, скорость испарения, коррозионная активность, токсичность, пожаро- и взрывоопасность. [c.123]

    Изучение вязкости разбавленных растворов полимеров может дать косвенную информацию о молярной массе полимеров. В уравнении Эйнштейна (XVI.2.3), описывающем зависимость вязкости от концентрации, оказалось что для растворов ВМС коэффициент к этого уравнения зависит от степени полимеризации ВМС. Вязкость растворов ВМС одного полимер-гомологического ряда с различной относительной молярной массой в одном и том же растворителе различна, т. е. удельная [c.442]

    На одном графике строят три кривые зависимости приведенной вязкости от концентрации для разбавлений раствора полиэлектролита, водой и солевыми растворами разных концентраций. График зависимости, имеющий прямолинейный характер, экстраполируют к нулевой концентрации полиэлектролита и находят характеристическую вязкость раствора полиэлектролита при данной ионной силе раствора /о. На основании уравнения (IV. 7) рассчитывают долю свободных противоионов в исходном растворе полиэлектролита ф и степень связывания (1 —ф) противоионов. При этом следует помнить, что в данном случае за исходную концентрацию полиэлектролита следует принимать концентрацию только солевых групп, полностью диссоциированных в водном растворе. [c.136]

    Уравнение (VI.4.10) выражает важное свойство эквивалентной электропроводности — ее аддитивность. В бесконечно разбавленном растворе а = 1, а вязкость раствора становится равной вязкости чистого растворителя rio. Поэтому эквивалентная электропроводность электролита при бесконечном разведении Ао будет определяться следующим уравнением  [c.173]

    Эти законы перестают действовать при турбулентном течении. Оба закона применимы для чистых жидкостей, истинных растворов и некоторых коллоидов. В растворах высокомолекулярных веществ обнаруживается аномальная вязкость она очень высока и в противоположность первой группе жидкостей уменьшается с увеличением давления на протекающую жидкость (рис. 99). Большая вязкость этих растворов зависит от степени сродства между молекулами силы сцепления гидрофильных молекул белков и полисахаридов с молекулами воды очень высоки, и вязкость их даже в очень разбавленных растворах также будет высокой. Кроме того, большое значение имеет форма частиц. Если вытянутые частицы располагаются поперек потока, то они оказывают наибольшее сопротивление. При увеличении внешнего давления на жидкость эти частицы ориентируются вдоль потока, в результате вязкость раствора уменьшается. [c.221]

    Следовательно, первый член в выражении для В зависит от вязкости раствора, второй — от электропроводности при бесконечном разбавлении. Величина В зависит от природы растворителя и растворенного электролита. [c.97]

    В случае полидисперсного полимера молекулярная масса, определяемая по уравнению (HI. 19), является средневязкостной. Учитывая, что вязкость разбавленного раствора является аддитивным свойством и что константы и а не зависят от молекулярной массы, для вязкости раствора полидисперсного полимера можно написать  [c.102]

    Характернейшее свойство растворов высокополимеров — высокая вязкостьУ Даже разбавленные их растворы мало текучи в сравнении с чистым растворителем. Кроме того, они, как правило, не подчиняются основным законам вязкого течения (справедливым для чистых жидкостей, растворов низкомолекулярных веществ, а также многих коллоидов), обнаруживая так называемую аномальную вязкость. Чтобы рассмот- [c.216]

    Для растворов высокомолекулярных соединений формула Эйнштейна неприменима, так как макромолекулы имеют не шарообразную, а нитевидную форму и даже в разбавленных растворах взаимодействуют, образуя агрегаты, иммобилизующие жидкость. Измеренная в опыте вязкость растворов высокополимеров оказывается всегда значительно выше вычисленной теоретически по формуле Эйнштейна. Кроме того, для растворов высокополимеров не наблюдается линейного роста вязкости с ростом концентрации раствора она возрастает очень сильно благодаря образованию сетки из макромолекул. [c.221]

    Для характеристики вязкости очень разбавленных растворов полимеров, в которых макромолекулы не взаимодействуют друг с другом, Штаудингером предложено следующее уравнение  [c.256]

    При увеличении скорости течения разбавленных растворов полимеров гибкие макромолекулы распрямляются и ориентируются по направлению течения. В результате снижается гидродинамическое сопротивление движущейся жидкости и уменьшается вязкость раствора. [c.258]

    При малой кратности растворителя к сырью вязкость раствора снижается недостаточно, что ведет к образованию дополнительных центров кристаллизации и, следовательно, образованию мелких груднофильтруемых кристаллов. С другой стороны, чрезмерное разбавление сырья растворителем снижает концентрацию твердых углеводородов в растворе. В результате этого средняя длина диф — фузионного пути кристаллизующихся молекул увеличивается настолько, что даже при медленном охлаждении они не успевают достигнуть поверхности первичных зародышей, что вызывает возникновение большого количества мелкодисперсных кристаллов па — рафинов. Оптимальная величина кратности растворителя зависит от фракционного и химического состава сырья, его вязкости, химической природы растворителя и требований к качеству депарафи — низатов. При этом следует учесть то обстоятельство, что с увеличением кратности растворителя повышаются эксплуатационные. затраты. Очевидно, что с повышением вязкости сырья и глубины депарафинизации требуемая кратность растворителя будет возрастать. [c.258]

    При малой кратности растворителя к сырью, когда вязкость раствора велика, даже при малой концентрации твердых углеводородов и медленном охлаждении образующиеся кристаллы невелики, так как передвижению молекул к центрам кристаллизации препятствует выделяющийся из раствора парафин. В результате сужается область, из которой молекулы твердых углеводородов поступают к первично образовавшимся зародышам, что вызывает возникновение новых центров кристаллизации, увеличение числа кристаллов и, в конечном счете, образование мелкодисперсных труднофильтруемых осадков. Слишком большое разбавление сырья растворителем снижает концентрацию твердых углеводородов в растворе. При этом средняя длина диффузионного пути молекул настолько увеличивается, что даже при медленном охлаждении в начальный момент образуется слишком много центров кристаллизации, в результате чего конечные размеры кристаллов уменьшаются. Следовательно, и в этом случае эффективность процессов снижается. В работе [АТ] исследовалось влияние кратности растворителя на растворимость в нем нафтеновых и ароматических углеводородов (рис. 50). Повышение кратности растворителя приводит к увеличению растворимости в нем углеводородов, причем растворимость ароматических углеводородов, обладающих большими молекулярной поляризацией и дисперси- [c.146]

    В отличие от самого фенантрена его 9-хлор- и 9-бром-про-изводные дают с серной кислотой при 100° [822] 65—75%-ный выход одной кпслоты, а именно 3-(или 6-)сульфокислоты. Последнее доказывается восстановлением ее посредством цинка и ам-литака в феиантрен-З-сульфокислоту. Бромсульфокислота, известная под названием ЫО-бромфенантрен-З- (или 6-) сульфокислоты, подробно исследована благодаря любопытным свойствам ее водных растворов. Разбавленные растворы ведут себя, как растворы обычных электролитов, тогда как в более концентрированных растворах обнаруживаются коллоидные или анизатронные свойства, зависящие от концентрации и температуры. Переход от коллоидного состояния в жидко-кристаллические происходит в растворе данной концентрации при определенной температуре [823]. Действие света на водный раствор кислоты [824] приводит к изменению вязкости, объясняемому образованием нового соединения, строение которого неизвестно. [c.126]

    Первые исследования Штаудингера и его сотр. как будто подтвердили правильность предложенного им уравнения. Однако дальнейшие работы показали, что приведенная вязкость растворов одного и того же полимера обычно возрастает с повышением концентрации, причем это возрастание в интервале небольших концентраций происходит по прямой, как это показано на рис. XIV, 11 (прямая 2). Отрезок, отсекаемый этой прямой на оси т1уд/с, отвечает величине так называемой характеристической вязкости [ti], отражающей гидродинамическое сопротивление потоку молекул данного полимера. Характеристическая вязкость представляет собой приведенную вязкость при бесконечно большом разбавлении раствора. [c.460]

    При температуре выше тех температур, при которых происходит плавление студня, ни разбавленные, ни концентрированные студни не обнаруживают критического напряжения сдвига. Незастудневающие растворы, например растворы нитрата целлюлозы в ацетоне, не обнаруживают критического напряжения сдвига ни при к ких концентрациях. Они текут при самых малых напряжениях сдвига, хотя это течение вследствие высокой вязкости растворов и происходит весьма медленно. [c.487]

    В разбавленных растворах слабых электролитов вязкость раствора мало отличается от вязкости чистого растворителя. Поэтому подвижности ионов близки к подвижиости ионов в бесконечно разбавленных растворах. Сопостав.пение уравнений (VI.4.10) и (VI.4.11) показывает, что отношение эквивалентной электропроводности при данной концентрации к его эквивалентной электропроводности при бесконечном разведении равно степени диссоциации  [c.174]

    При исследовании разбавленных растворов полимеров определяют обычно не абсолютную вязкость, а относительную, т. е. отношение вязкости раствора полимера ц к вязкости чистого растворителя т1о, которое при условии, что плотности разбавленного раствора и чистого растворителя практически совпадают, равно т отн = л/ По = / 0, где t и to — времена истечения соответственно раствора и чистого растворителя. Отношение (ti — По)/ По показывает относительный прирост вязкости вследствие введения в растворитель полимера и называется удельной вязкостью Т1уд, отношение Луд/С — приведенной вязкостью tinp и Игпт уд/С при С О называется характеристической вязкостью [т]]. [c.99]

    Рассмотрение формулы т1уд=Л Мс приводит к выводу, что отношение г)уд/с (приведенная вязкость) не зависит от концентрации, поскольку /( и М — постоянные величины. Но в действительности вследствие взаимодействия молекул растворенного вещества друг с другом даже в разбавленных растворах приведенная вязкость зависит от концентрации, линейно увеличиваясь вместе с ней. Этот факт учитывают при более точных определениях молекулярного веса высокомолекулярных соединений. Тогда, произведя измерения для нескольких растворов различных концентраций (например, 0,2 0,4 0,6%), строят график концентрация — приведенная вязкость и путем экстраполирования находят на ординате значение приведенной вязкости при бесконечном разбавлении. Кроме того, принимают во внимание, что длинные молекулы полимера изгибаются и сворачиваются в клубки, что должно привести к уменьшению вязкости раствора. С учетом обоих факторов вычисление производят по так называемому обобщенному уравнению Штаудин-гера приведенная вязкость г уд/с=/СМ°, где а=0,67. [c.283]

    Выбор условий депарафинизации. Увеличение вязкости депа-рафинируемого сырья требует большое количество растворителя, чтобы уменьшить вязкость раствора и таким образом создать благоприятные условия для роста кристаллов парафинов и способствовать большей скорости фильтрации. Однако с увеличением разбавления растворителем возрастает количество растворенного в нем парафина (церезина) после отгонки растворителя эти твердые углеводороды останутся в масле, вследствие чего снизится эффект депарафинизации, так как возрастет температура застывания готового масла. [c.371]

    Добавление коллоидных частиц к растворителю с вязкостью т о приводит к увеличеникх вязкости раствора т). Повышение вязкости есть результат увеличения трения между прилегающими мономолекулярными слоями жидкости, вызванного тем, что частицы крупнее молекул растворителя. Изменение вязкости обычно выражают как отношение т /т о, называемое относительной вязкостью Если коллоидные частицы имеют сферическую форму и не взаимодействуют между собой (разбавленные растворы), то, как было установлено А. Эйнштейном, [c.309]

    В дальнейшем было показано, что сольватация не играет столь важной роли при образовании растворов ВМС. Основной причиной отклонения вязкости растворов ВМС от законов, которым подчиняются растворы низкомолекулярных вещестй, является взаимодействие вытянутых и гибких макромолекул, часто образующих структурированные системы (ассоциаты). Эти ассоциаты, естественно, сильно увеличивают вязкость раствора по сравнению с раствором лиофобных коллоидов, где взаимодействием частиц можно пренебречь. При низкой концентрации растворов ВМС вероятность структурирования не так велика, и поэтому для сильно разбавленных растворов может быть использовано уравнение Эйнштейна. При высокой концентрации эти взаимодействия очень велики. Кроме того, так как макромолекулы в растворе находятся в виде клубков, включающих большой объем растворителя, то объем этого растворителя, пространственно связанного с полимером, также следует отнести к объему дисперсной фазы. [c.358]

    В сильно разбавленных растворах ПАВ содержатся отдельные, не связанные друг с другом молекулы. Измеряя вязкость растворов, можно определить отношение d/l [10]. Однако в связи с тем, что ПАВ являются полидисперсными высокомолекулярными веществами, т. е. состоят, например, из смеси полимергомологов различной степени оксиэтилирования, для полимергомологов разной длины величина d/l будет различной и вклады, внесенные короткими и длинными молекулами в величину вязкости, также будут неодинаковыми. Поэтому возникает необходимость в разделении ПАВ на узкие фракции с определенной длиной полимергомологов, что практически осуществить очень сложно. Таким образом, путем измерения вязкости растворов ПАВ вычислить отношение djl, а затем и коэффициенты дисимметрии невозможно. [c.68]


Смотреть страницы где упоминается термин Вязкость растворов разбавленны: [c.69]    [c.133]    [c.41]    [c.14]    [c.78]    [c.337]    [c.198]    [c.115]    [c.153]    [c.192]    [c.68]    [c.357]   
Реология полимеров (1966) -- [ c.97 ]




ПОИСК





Смотрите так же термины и статьи:

Вязкость растворов ВМС

Растворов разбавление



© 2025 chem21.info Реклама на сайте