Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Льюиса формулы

    Он предположил, что обобществление пары электронов (по Льюису и Ленгмюру) можно трактовать как взаимодействие волн или перекрывание электронных облаков. Химической связи, изображаемой в структурной теории Кекуле чертой, в новых представлениях соответствует область максимального перекрывания электронных облаков. При этом оказалось, что перекрывание электронных облаков иногда происходит не только в единственном направлении, изображаемом валентной связью в структурной формуле. Иначе говоря, истинную структуру молекулы нельзя представить даже приближенно никакой структурной формулой в отдельности. Ее можно, однако, рассматривать как промежуточную между несколькими гипотетическими структурами, как резонансный гиб- рид этих структур. Важно от.метить, что энергия такой реальной молекулы ниже, чем можно было бы ожидать на основании любой [c.161]


    До открытия электрона невозможно было понять природу химической связи. Правда, понятие о валентности существовало уже в 1852 г. и в эти же годы существовали некоторые представления о геометрических формах молекул. Вант Гофф и Лебель установили тетраэдрическую структуру атома углерода, а Вернер создал стереохимию комплексных ионов. Очевидно, для того чтобы молекула имела определенную геометрическую форму, должны существовать какие-то связывающие силы между ее частями. В структурных формулах такую химическую связь между связанными атомами изображали черточкой. Она указывала на существование связи, но, разумеется, не давала никакого описания ее природы. Незадолго до открытия электрона Аррениус предположил существование свободных ионов. На основе этого предположения были сделаны многочисленные попытки найти объяснение силам, связывающим атомы. Хотя эти попытки были неудачными, они содействовали представлению об электрическом заряде как основе образования связи. После открытия электрона стало возможно дальнейшее развитие теории связи. В течение немногих лет, основываясь на положительно и отрицательно заряженных атомах, было предлол<ено много разных объяснений образованию связи, но почти не было попыток связать заряды атома с его строением. В 1916 г. Льюис предложил свою теорию валентности. С тех пор было много сделано в области применения математики в теории валентности, но в основе представления о химической связи лежит по-прежнему теория Льюиса. Согласно Полингу , химическая связь возникает между двумя атомами в том случае, если связывающая атомы сила настолько велика, что приводит к образованию достаточно устойчивого агрегата, чтобы обеспечить его существование в виде самостоятельной частицы. Обычно различают пять типов химической связи ионная, ковалентная, металлическая, связь, обусловленная силами Ван-дер-Ваальса, и водородная, причем три первых очень прочны. Все эти связи одинаково важны, но металлическая связь здесь не будет рассмотрена о ней можно прочесть в других источниках . [c.134]

    В большинстве работ по изучению каталитической активности оксида алюминия затрагивается связь ее с поверхностной кислотностью. Обширная дискуссия о природе кислотных центров оксида алюминия в настоящее время решена в пользу утверждения, что кислотность оксида алюминия связана с кислотой типа Льюиса и обусловлена ионами алюминия с координационным числом 4. Некоторые авторы предполагают наличие на поверхности оксида алюминия двух типов кислотных центров до 300 °С имеет место кислотность типа Льюиса, а выше 300 °С - Брен-стеда. В серии рабо т, где высказана эта же точка зрения, одновременно сформулированы требования к химическому составу оксида алюминия, обеспечивающему его максимальную кислотность. Кислотность оксида алюминия зависит также от содержания в нем щелочноземельных и особенно щелочных металлов (натрия). На примере реакций изомеризации олефинов установлена зависимость между содержанием натрия в оксиде алюминия и изомеризующей активностью и кислотностью. Максимальные активность в реакции изомеризации олефинов и кислотность соот-вествуют минимальному содержанию натрия в оксиде алюминия. Каталитическую активность оксида алюминия в реакциях кислотного тлпа можно усилить путем введения в его состав галогенов. Единое мнение о характере взаимодействия оксида алюминия и галогенов заключается в том, что поверхностные гидроксильньге группы оксида алюминия и, возможно часть атомов кислорода замещаются ионами хлора и фтора. Природа ак тивных центров оксида алюминия, возникающих при введении галогена и механизм влияния фтора и хлора на его поверхностную кислотность являются предметом дискуссии. Согласно Ал. А. Петрову [5, с. 72], ок сид алюминия, обработанный хлороводородом, увеличивает кислотность и приобретает каталитическую активность в том случае, когда хлорид-ион замещает одну из парных гидроксильных групп, причем водород другой гидроксильной группы, благодаря соседству электроотрицательного атома хлора, становится подвижным и способным к диссоциации в форме протона. При замещении галогеном одиночной гидроксильной группы активный центр не образуется. Структура активного центра хлорзаме-щенного оксида алюминия может быть представлена формулой [c.44]


    Схематическое описание ковалентных связей в химических соединениях при помощи формул, в которых валентные электроны изображаются точками, было предложено в 1916 г. Дж. Льюисом. И хотя современное толкование химической связи основывается на гораздо более глубоких представлениях, электронно-точечные формулы по-прежнему остаются удобными обозначениями. Каждый валентный электрон атома (т.е. электрон на самых внешних 5- и р-орбиталях) изображается точкой рядом с символом химического элемента, например [c.465]

    Напишите уравнение реакции нитрования 2-ме-тилпентана оксидами азота (А. В. Топчиев, А. И. Титов). Рассмотрите механизм (Sr) этой реакции. Какое практическое значение имеют нитроалканы Напишите октетные формулы (по Льюису) оксидов азота (NO2, N0). [c.91]

    Теория Льюиса — Ленгмюра позволяет объяснить, как образуются связи между атомами углерода или между атомами углерода и атомами водорода в органических соединениях. Большинство органических молекул можно легко представить электронными фор-мулами, в которых прежние штрихи формул Кекуле (см. гл. 7) — зто обобществленные пары электронов. [c.160]

    Предположив, что выполняется правило Льюиса — Рэндалла, находим по формулам (У1-73) и (У1-75)  [c.169]

    К основаниям Льюиса относятся галогенид-ионы, вещества, содержащие аминный азот (аммиак, алифатические и ароматические амины, пиридин и т. п.), кислородсодержащие соединения общей формулы КаСО, где К — органический радикал или атом галогена. [c.284]

    При расчете йв учитывают, что при Xb->-0 величина пал/хА также стремится к нулю. Для исключения этого Льюис предлагает применять такую формулу  [c.241]

    Каждую молекулу, ион или свободный радикал, имеющие только локализованные электроны, можно изобразить электронной формулой, называемой структурой Льюиса, которая показывает локализацию этих электронов. В формулах Льюиса указывают только валентные электроны они могут вхоДить в ковалентную связь, соединяющую два атома, или быть непо-деленными. Студент должен уметь правильно изображать электронные структуры молекул. Поскольку положение электронов меняется в ходе реакции, необходимо знать, где находятся электроны до смещения и куда они переходят. Существует несколько общих правил, которыми полезно руководствоваться. [c.26]

    Льюис и Рендалл (1921) установили, что коэффициенты активности и некоторые другие свойства электролитов зависят не только от концентрации, но и от зарядов ионов. Чем выше заряд иона, тем при меньшей концентрации электролита достигается заданный термодинамический эффект. Полезной характеристикой раствора является его ионная сила /, рассчитываемая по формуле [c.436]

    Льюис также установил, что предельное восстановление при неограниченном времени может быть выражено формулой  [c.235]

    Какая химическая связь называется координационной (донорно-акцепторной) Используя октетные формулы Льюиса, допишите уравнения следующих реакций  [c.5]

    Для реальных систем в термодинамике используется более простой путь, предложенный Льюисом, сущность которого в применении к реальным газам состоит в следующем. Вводится новая термодинамическая величина —фугитивность (летучесть), которая подбирается так, чтобы выражение энергии Гиббса сохранило тот же вид, что и в случае идеального газа. Поскольку с энергией Гиббса связывается рещение вопроса о направлении процессов и о равновесии, ряд термодинамических формул, касающихся равновесия, тоже сохраняет свой вид при переходе к реальным газам. [c.101]

    В качестве примера укажем, что Льюис и Рэндалл в первом издании своей известной книги Химическая термодинамика рекомендовали применять для целого ряда газов Оа, N0, СО одну и ту же формулу из двух членов  [c.53]

    После создания планетарной модели строения атома американский ученый Джильберт Ньютон Льюис (1875—1946) в 1916 г. предложил электронные формулы, Для изображенных выше молекул они выглядели таким образом  [c.16]

    Таким образом, пара электронов в формулах Льюиса только символизирует образование химической связи, а не вскрывает ее природу, просто является более современным аналогом крючочков , иллюстрирующих связь атомов в молекуле. [c.16]

    Мезоионные соединения [209] нельзя удовлетворительно представить формулами Льюиса, не включающими разделение зарядов. Большинство из них содержат пятичленные циклы. Наиболее распространенными являются сидноны (94)—устойчивые ароматические соединения, вступающие в реакции ароматического замещения, если Р = водород [210]. [c.91]

    Осталось обсудить еш,е один вопрос, относящийся к химической связи в органических соединениях. В подавляющем большинстве соединений все молекулы имеют одинаковую структуру независимо от того, можно ли ее удовлетворительно представить формулой Льюиса. Однако многие соединения представляют собой смесь двух или нескольких структурно различных соединений, находящихся в состоянии быстрого равновесия. Когда такое явление, называемое таутомерией [228], имеет место, происходит быстрый перенос атома от одной молекулы к другой и обратно. Почти во всех случаях таким подвижным атомом является водород. [c.95]


    Закономерности изменения кислотности Льюиса также связаны с положением элемента в периодической таблице это видно из сравнения силы льюисовских кислот общей формулы МХ [87]. [c.344]

    Согласно теории Г. Льюиса, химическая связь в подобных молекулах обусловлена образованием электронных пар, которые принадлежат одновременно двум атомам. Такая электронная пара расположена между двумя соединяющимися в молекулу атомами и взаимодействует с их положительно заряженными ядрами, как бы стягивая их вместе. Кроме того, при образовании молекулы каждый из атомов приобретает внешнюю электронную оболочку благородных газов, т. е. состоящую из двух или восьми электронов. Пользуясь схемами рис. XII.1, ХП.2 или ХП.З и обозначая электроны водорода точками, а электроны хлора и азота крестиками, можно представить строение молекул, например На, НС1 и NH3 следующими формулами  [c.153]

    Коэффициент активности, по теории сильных электролитов, зависит от валентности иона и от ионной силы раствора. Ионная сила раствора — мера напряженности электрического поля, существующего в растворе. Ионная сила х вычисляется по формуле, предложенной Льюисом и Рэндаллом  [c.36]

    Формулы Фэнчера, Льюиса и Бернса получены формальным введением в выражение для числа Рейнольдса эффективного диаметра й/эф в качестве характерного размера пористой среды, они не сопоставимы с результатами трубной гидравлики, дают слишком узкий диапазон изменения значений Re,p (см. графу 4 табл. 1.1), мало обоснованы. [c.21]

    В 1893 г. 26-летний швейцарский химик Альфред Вернер выдвинул теорию, которая успешно объяснила изложенные выше факты и легла в основу теории комплексных соединений металлов. Одно из важнейших утверждений Вернера состояло в том, что металлы кроме главной (первичной) валентности обладают еще и побочной (вторичной) валентностью. В современной химии этим понятиям соответствуют степень окисления м еталла и его координационное число. Хотя Вернер не обосновал свое утверждение теоретически (теория ковалентной связи Льюиса появилась лишь 23 года спустя), он объяснил, исходя из вьщвинутого им утверждения, многие экспериментальные факты. Вернер постулировал, что кобальт(П1) имеет главную валентность 3 и побочную валентность 6. Поэтому он записал формулу o lj-SNHj как [Со(ННз)5С1]С12. Лиганды, помещенные в квадратных скобках, насыщали побочную валентность кобальта, [c.385]

    Еще во времена Бенджамина Франклина и Джона Дальтона высказывалось предположение, что силы взаимодействия между частицами материи должны иметь главным образом электрическое происхождение. Однако поскольку одноименные заряды отталкиваются друг от друга, существовало неправильное мнение, что между одинаковыми атомами не могут возникать связи тем не менее в настоящее время все хорошо знают, что большинство распространенных газов состоит из двухатомных молекул Н2, N2, О2, р2, С12 и т.д. Эта грубая ошибка привела к почти полувековой путанице с молекулярной структурой и атомными массами так, полагали, что газообразный водород описывается формулой Н, а не Н2, воду описывали формулой НО вместо Н2О, а кислороду приписывали атомную массу 8 вместо 16. Лишь в 1913 г. Льюис ввел представление о том, что электронные пары являются тем клеем , который соединяет между собой атомы с образованием ковалентных связей, однако теоретическое объяснение роли электронных пар было дано спустя еще 20 лет. Опыты Фарадея показали, что заряды на ионах всегда кратны некоторым элементарным единицам заряда, причем моль этих зарядов составляет 1 Р, а Стоней назвал эту элементарную единицу заряда электроном. Однако Стоней отнюдь не отождествлял электрон с какой-либо частицей, которую можно было попытаться изолировать и исследовать. [c.47]

    Г. Н. Льюис (1901 год) предложил для описания свойств неидеальных систем использовать формулы, полученные для идеального состояния веществ (идеальные законы), но вместо концентраций и давления в эти формулы предлагается вводить новые параметры, которые были названы активностью а (подставляется в формулы вместо концентраций С) и фугитив-ностью или летучестью / (подставляется в формулы вместо Р). [c.221]

    Карбоний-ионный механизм каталитического крекинга исходит из кислотного характера алюмосиликатного катализатора, имеющего условную формулу яА120з /я5102-д Н20. На поверхности катализатора имеются каталитические центры двух видов протонные, где каталитическая функция принадлежит протонам (кислоты Бренстеда), и апро-тонные (кислоты Льюиса), где координационно ненасыщенный атом алюминия служит акцептором электронов. [c.89]

    Здесь КА обозначает поверхностно-неактивный электролит, К А электролит со специфически адсорбирующимся катионом и КА -электролит со специфически адсорбирующимся анионом т — доля поверхностно-активного электролита в смеси. Если предположить, что в диффузном слое отношение концентраций ионов 1К 1/(К1 или А /(А равно ml( —ni) (т, е. их отношению в объеме раствора), а в растворах с постоянной ионной силой изменение активности ионов пропорционально изменению их концентрации (закон Льюиса — Рен-далла), то из основного уравнения электрокапиллярности (3.1) нетрудно получить формулу [c.144]

    И Льюис и Усанович правильно указывают на аналогию в поведении протонсодержащих и апротонных соединений в протонных к апротонных растворителях, но использование, например, определения Льюиса осложняется тем, что, с одной стороны, строение целого ряда веществ нельзя выразить одной электронной формулой , а с другой стороны, строение многих комплексов вообще не известно . Кроме того, вследствие излищней обобщенности теряется специфика, присущая кислотно-основному взаимодействию (например, по сравнению с окислительно-восстановительным), тогда как теория Бренстеда позволила обобщить огромный фактический материал и является стройным физикохимическим учением о кислотности — основности, наиболее приемлемым на современном этапе развития химии .  [c.281]

    Вещества, являющиеся донорами электронных пар, называют основаниями Льюиса, а акцепторы электронных hap - кислотами Льюиса. К основаниям Льюиса относятся галогенид-ионы, вещества, содержащие аминный азот (аммиак, алифатические и ароматические амины, пиридин и т. п.), кислородсодержащие соединения общей формулы Rj O (где R - органический радикал или атом галогена). Кислотами Льюиса являются галогениды бора, алюминия, кремния, олова, фосфора, мышьяка, сурьмы и многих других элементов, ионы-комплексообразователи Ag, Со , Сг , Pt и др. [c.302]

    Говоря о методе валентных связей, подразумевают, с одной стороны, один из квантово-химических способов расчета электронной структуры молекулы, с другой—связанную с этим способом методику описания и анализа химических связей в системе. Согласно этой методике выделяют валентную группу атомных орбиталей (АО), охватывающую наивысшие по энергии занятые и наииизшие по энергии свободные АО. Образование химической связи рассматривают в духе концепции Льюиса за счет спаривания электронов соседних атомов по схеме А-- - В— -А В (ковалентная связь) или передачи электронной пары от донора к акцептору по схеме А +В—>А В. Таким образом, электронная пара соответствует валентному штриху в структурных формулах. [c.61]

    Многие соединения можно адекватно описать одной структурной формулой Льюиса (разд. 1.6), однако для целого ряда других соединений этого недостаточно. Речь идет о соединениях, в которых одна или более связывающих орбиталей принадлежат не только паре атомов, но охватывают три ядра или даже большее число ядер. Такого рода связь называют дело-кализованной [1]. В настоящей главе будут рассмотрены типы соединений, которые можно представить с помощью таких связей. [c.47]


Смотреть страницы где упоминается термин Льюиса формулы: [c.524]    [c.385]    [c.203]    [c.203]    [c.203]    [c.200]    [c.39]    [c.45]    [c.126]    [c.162]    [c.212]    [c.384]    [c.384]   
Органическая химия Том1 (2004) -- [ c.46 , c.49 ]

Начала органической химии Кн 1 Издание 2 (1975) -- [ c.20 ]




ПОИСК





Смотрите так же термины и статьи:

Льюис



© 2024 chem21.info Реклама на сайте