Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Теплота адсорбции хемосорбции

    В отличие от хемосорбции физическая адсорбция основана главным образом на вандерваальсовом взаимодействии между поверхностью твердого вещества и ее окружением. Поэтому теплота адсорбции нередко составляет не более 40 кДж на моль адсорбированного вещества и вследствие этого адсорбированный слой легко отделяется от поверхности. Удаление молекул адсорбированного вещества с поверхности адсорбента называется десорбцией. Для осуществления процесса десорбции [c.87]


    При минимальной энергии взаимодействия наблюдается физическая адсорбция. В основе ее лежит диполь-дипольное взаимодействие Ван-дер-Ваальса молекула сорбата и сорбирующая поверхность поляризуют друг друга, и взаимодействие между индуцированными диполями порождает теплоту адсорбции. Ее величина обычно не превышает 0,015—0,03 аДж. При обменном взаимодействии электронов твердого тела с частицей сорбата, когда энергия связи составляет около 0,15 аДж, связь имеет химическую природу, и такая адсорбция именуется хемосорбцией [206]. [c.182]

    Четкое различие между физической адсорбцией и хемосорбцией отсутствует. Можно лишь сказать, что при хемосорбции теплота адсорбции значительно больше. К тому же, если молекула в процессе адсорбции диссоциирует в силовом поле металла, то этот критерий вообще теряет свое значение [207]. Не дает полного представления о характере адсорбции и энергия активации, хотя в большинстве случаев процесс хемосорбции активирован, а физическая адсорбция протекает практически без активации [208]. [c.183]

    Уменьшение энтальпии называется теплотой адсорбции. Теплота физической адсорбции соизмерима с теплотой конденсации и составляет для простых молекул 1—5 и для больших молекул 10—20 ккал/моль [69]. Теплота хемосорбции составляет 10— 100 ккал/моль. [c.38]

    Различают физическую и химическую адсорбцию (хемосорбцию). При физической адсорбции молекулы адсорбента и поглощаемого вещества не вступают в химическое взаимодействие. При хемосорбции имеет место химическое взаимодействие молекул поглощаемого вещества с адсорбентом. Адсорбция — процесс экзотермический, т. е. идет с выделением тепла. Для газов и паров тепло.та адсорбции примерно равна теплоте их конденсации, а при адсорбции из растворов теплота адсорбции меньше. [c.315]

    Например, при физической адсорбции кислорода на угле при 68° К его теплота адсорбции равна 15,5 кдж/моль, причем адсорбция обратима. При хемосорбции кислорода (при 273° К) его теплота адсорбции возрастает до 300 кдж/моль, причем адсорбция становится необратимой. [c.426]

    Некоторые исследователи считают, что величина теплоты адсорбции дает указание на тип наблюдаемой адсорбции. При физической адсорбции действуют те же силы, которые вызывают сжижение газов. Поэтому можно ожидать, что теплоты адсорбции в этом случае будут иметь тот же порядок величины, что и теплоты сжижения газов. С другой стороны, в хемосорбции участвуют такие же силы, которые приводят к образованию химических соединений, и поэтому можно ожидать, что теплоты хемосорбции будут иметь тот же порядок величины, что и теплоты образования этих соединений. Отсюда возникает мысль, что физическая адсорбция не может сопро- [c.20]


    Теплоты адсорбции и десорбции и величины энергий активации при хемосорбции на металлах [c.51]

    Данный тип хемосорбции, вероятно, не приводит к образованию ковалентных связей между атомами углерода и атомами водорода. Подобные связи образуются при более высоких температурах, т. е. в результате хемосорбционного процесса, характеризуемого значительной энергией активации и гораздо более высокой теплотой адсорбции. [c.75]

    Даже тогда, когда хемосорбция первых атомов протекает без энергии активации, с увеличением степени заполнения дальнейшая хемосорбция может потребовать затраты энергии активации. Изучение потенциальных кривых (рис. 37) показывает, что с увеличением степени заполнения, начиная с некоторого значения О, уменьшение теплоты адсорбции обычно сопровождается появлением и последующим ростом энергии активации. Кривой 4 на рис, 37 соответствует энергия [c.148]

    Согласно представлениям, которые были приняты при выводе изотермы адсорбции Лэнгмюра, теплоты адсорбции постоянны и не зависят от адсорбированного количества. Однако, как указывалось в разделе IX, при хемосорбции этого не наблюдается, и поэтому мь[ выведем соответствующее выражение, исходя из логарифмической изотермы адсорбции (уравнения 71 и 74). [c.158]

    Адсорбция кумола и ингибиторов на центрах, активных по отношению к крекингу, следует изотерме Лэнгмюра, Это означает, что взаимодействие между хемосорбированными молекулами или слабо, или отсутствует. Такой результат не является неожиданным потому, что исследованием хемосорбции ингибитора—хинолина на аналогичном катализаторе [14] было показано, что концентрация активных центров на поверхности катализатора мала (при 315° хемосорбированным хинолином было покрыто менее 5% всей поверхности катализатора). Кроме того, активные центры однородны по теплотам адсорбции. [c.331]

    В этом случае АР и А5 отрицательны, значит АН имеет также отрицательное значение. Отсюда следует, что адсорбционные процессы являются экзотермическими, что подтверждается экспериментально. Уменьшение энтальпии в этих процессах называют теплотой адсорбции. Для физической адсорбции теплота адсорбции имеет порядок теплоты конденсации паров, для хемосорбции — порядок тепловых эффектов химических реакций, т. е. значительно превышает теплоту физической [c.96]

    Тем не менее в большинстве случаев природу явления можно тан ить, исследовав величину теплового эффекта процесса. При уменьшении свободной поверхностной энергии в процессе адсорбции выделяется теплота адсорбции . Очевидно, что в процессе хемосорбции выделяется значительно большее количество тепла, чем в процессе физической адсорбции. В первом случае теплота адсорбции по порядку величины близка к теплоте химических реакций, во втором — к теплоте конденсации. Существуют и другие, менее общие признаки различия, например характер изотерм, кинетика процесса, его обратимость и др. [c.106]

    При адсорбции свободная поверхностная энергия уменьшается и АР отрицательна. Так как до адсорбции молекулы газа могут двигаться в трех направлениях, а после адсорбции либо прочно удерживаться на твердой поверхности, либо двигаться только в двух направлениях, процесс адсорбции сопровождается понижением энтропии и А5 имеет отрицательное значение. Тогда из уравнения (а) следует, что АН также отрицательно. Это означает, что процессы адсорбции являются экзотермичными. Выделяющаяся при адсорбции теплота носит название теплоты адсорбции. При физической адсорбции теплоты адсорбции имеют значения такого же порядка, как и теплоты конденсации газов (2—3 ккал/моль), при хемосорбции теплоты адсорбции гораздо больше и имеют порядок теплот образования химических соединений (десятки ккал/моль). В соответствии с правилом Ле-Шателье ( 53), с повышением температуры количест- [c.284]

    Теплота адсорбции. В процессе физической адсорбции обычно выделяется 8—40 кДж теплоты на 1 моль адсорбированного вещества. Теплота хемосорбции, как правило, превышает 80 кДж/моль. [c.264]

    В области средних заполнений молекулы занимают близко расположенные адсорбционные центры. Взаимное влияние одинаково ориентированных в адсорбционном слое полярных молекул всегда представляет собой электростатическое отталкивание, приводящее к уменьшению теплоты хемосорбции Я по мере увеличения 0. Это и становится причиной замедления адсорбции при увеличении 0. В первом приближении зависимость теплоты адсорбции от среднего расстояния г между взаимодействующими молекулами адсорбата можно выразить уравнением [c.166]

    Теплоты адсорбции. Силы химической связи много больше физических сил притяжения. Поэтому теплоты хемосорбции должны быть высокими, приближающимися к теплотам химической связи. Например, теплота хемосорбции водорода на вольфраме порядка 154 кДж/моль. Теплоты же физической адсорбции должны быть низкими и в пределе должны соответствовать теплотам конденсации. Так, для водорода теплота физической адсорбции составляет 8,3 кДж/моль. Однако теплота адсорбции не всегда однозначно определяет характер возникающей адсорбционной связи. [c.34]


    Теплоты физической адсорбции всегда малы и близки к теплотам конденсации (10 — 50 кДж/моль). Теплоты же хемосорбции близки к теплотам химических реакций (80—400 кДжУмоль и более). [c.86]

    СКОЛЬКО СОТ калорий на 1 люль. При хемосорбции тепловые эффекты по величине приближаются к тепловым эффектам химических реакций и составляют41 900—419000 кдж/кмоль (10—100 ккал/моль). Так, например, теплота адсорбции кислорода на углероде равна 335 200 кдж/кмоль (около 80 ккал/моль), а теплота сгорания углерода составляет 393860 кдж/моль ккал/моль). В этом случае действительно образуется стабильное соединение и при попытках удалить адсорбат с поверхности путем вакуумирования вместе с кислородом выделяется некоторое количество окиси углерода. [c.205]

    Подобные отклонения можно объяснить двояко. Отказавшись от постулата 3, приходим к представлению о хемосорбции на однородной поверхности, сопровождающейся взаимодействием сорбированных частиц. Если это взаимодействие заключается во взаимном отталкивании, теплота адсорбции должна уменьшаться с увеличением степени заполнения в согласии с опытными данными. Выбрав некоторую зависимость коэффициента адсорбции Ь [связанного с теплотой адсорбции соотношением (1.6) ] от степени заполнения поверхности и подставив ее в уравнение (1.5), можем аппроксимировать таким образом любую экспериментальную изотерму адсорбции. Отталкивание хемосорбированных молекул может являться следствием квантово-механического обменного взаимодействия [9]. Силы кулоновского или диполь-динольного взаимодействия играют малую роль, так как они долнщы сказываться лишь при значительной плотности сорбированных молекул, между тем отклонения от изотермы Лангмюра (или изотермы Генри) часто становятся заметными уже при очень малых степенях заполнения поверхности. Весьма правдоподобно объяснение природы сил взаимодействия сорбированных частиц через посредство электронного газа кристаллической решетки катализатора (см. постулат 3, а также работы [9, 10]) сила такого взаимодействия незначительно уменьшается [c.17]

    Согласно Тейлору реакции протекают на особых местах поверхности катализатора, так называемых активных центрах. Даже в чистом металле дтомы, расположенные на дефектах решетки, на реС рах и вершинах кристаллитов, ведут себя иначе, чем атомы, расположенные на плоской поверхности. Неоднородность поверхности характеризуют различными методами, изучением зависимостей дифферешщальной теплоты адсорбции или энергии активации при термодесорб1лии от степени заполнения. На изобарах адсорбции может наблюдаться несколько максимумов, что свидетельствует о наличии нескольких типов хемосорбции. В некоторых случаях неоднородность катализатора можно измерить индикаторами Гаммета, другими основаниями, с помощью инфракрасного спектра для выявления числа и силы кислотных центров. В случае бифункциональных катализаторов подбором соответствующих ядов можно оценить соотношение шФаллических и кислотных центров. Центрами могут служить группы или кластеры [c.90]

    Как уже указывалось (стр. 93), по современным представлениям следует различать 1) обычную адсорбцию за счет сил притяжения и 2) хемосорбцию за счет химических валентных сил. Несмотря на то, что между обоими типами адсорбции нельзя провести резкой грани, во многих отношениях они значительно различаются. При обычной адсорбции газ или пар конденсируется по всей поверхности многослойно, выделяющаяся при этом теплота адсорбции невелика и составляет 2000—8000 тл1г-мол, и процесс обратим. В случаях хемосорбции образуется мономолекулярный слой, занимающий обычно не всю поверхность, а локализующийся на наиболее активных участках. Остальная часть поверхности при этом также сорбирует, но чаще всего лишь физически. Теплота хемосорбции может доходить до 200 000 кал г-мол, причем десорбция протекает с большим трудом, и часто вещество десорбируется химически измененным. При хемосорбции получаются настоящие двумерные химические соединения, поэтому их часто называют двумерными. Для образования таких соединений необходима некоторая энергия активации. [c.116]

    Как видно из рис. 22, при 132° скорость и величина адсорбции больше, чем при 100°. Это непонятное явление было объяснено Г. Тейлором. Он предложил для дифференциации между первичной и вторичной адсорбцией принять обратимость процесса и количество выделенного тепла. Вторичная, или обратимая, адсорбция имеет обычно малую теплоту адсорбции, т. е является физической, или вандерваальсовой, адсорбцией. Первичная, или необратимая, адсорбция показывает высокие теплоты адсорбции и большие значения энергии активации. Необратимая адсорбция, или хемосорбция, ускоряется с повышением температуры так же, как и обычные химические реакции. Поэтому она была названа активированной адсорбцией. Величину энергии активации Е для последней легко можно вычислить по скоростям адсорбции при разных температурах, т. е. по температурному коэффициенту. Если принять, что при температурах и Та скорости адсорбции будут соответственно и, и v. , то Е находят по обычной формуле  [c.117]

    В действительности, при физической адсорбции, как правило, не наблюдаются очень высокие теплоты адсорбции, но в ряде случаев они достигают и превышают 20 ккал1моль. Теплоты хемосорбции обычно имеют высокие значения. Так, например, теплота адсорбции кислорода на некоторых металлах имеет порядок величины в несколько сот килокалорий иа моль. С другой стороны, бывают случаи, когда теплота хемосорбции имеет даже отрицательное значение, как, например, при образовании эндотермических соединений. [c.21]

    Экспериментально установлено, что в большинстве хемосорбционных процессов дифференциальная теплота хемосорбции сильно снижается с увеличением степени заполнения . В течение последних нескол1.ких лет это явление служило предметом многочисленных дискуссий [2, 60, 193—1961 Для того чтобы дать представление о величине дагшого - аффекта, мы приводим в качестве примера кривые рис. 27 и 28. Две верхние кривые на рис. 27 изображают теплоту хемосорбции водорода иа пленках вольфрама (кривая 2) [197, 1981 и на вольфрамовых нитях (кривая 3) [59]. Эти кривые показывают, что начальные теплоты хемосорбции (при 0=0) на, обеих ука.заииых формах вольфрама практически одинаковы и что уменьшение теплот адсорбции с возрастанием происходит практически по одной и той же кривой. Кривая / на том же рисунке показывает изменение теплоты хемосорбции водорода на вольфрамовом порошке по даннь[м Франкенбурга 1991 Начальная теплота хемосорбции практически та же, что И на вольфраме в других формах, но сама кривая обладает более крутым наклоном. Согласно подробному анализу, приведенному в работе Е)ика [60], возможно, что поверхность [c.119]

    Эффект разрыхления, возможно, также играл определенную. роль в опытах Тейлора и его сотрудников, уже описанных в разделе IX, 3, в которых увеличение температуры во время медленной адсорбции (требующей энергии активации) во многих случаях вызывало быструю десорбцию и последующую медленную повторную адсорбцию [290]. Как было отмечено в данном разделе, это явление часто считалось доказательством неоднородности поверхности по отношению к хемосорбции. При этом принималось, что наряду с участками, обладающими сравнительно низкой теплотой адсорбции и сравнительно низкой энергией активации, суидествуют участки, где как теплоты хемосорбции, так и энергии активации имеют более высокие значения. [c.154]

    Впрочем, имеется еще одна возмон<ность для объяснения указанных закономерностей. В разделе VI, 3 отмечалось, что хемосорбция водорода происходит различными способами. Если к обсуждаемому здесь явлению можно было бы применить общую схему, приведенную на рис. 13, то процесс быстрой хемосорбции заключался бы в хемосорбции водорода в минимуме Еа кривой АВЕа а, При этом энергия активации (Еа)л могла бы быть практически равной нулю. Если температура не слишком мала, то эта хемосорбция сопровождалась бы медленным процессом, отвечающим кривой АВЕвРв с энергией активации Еа)в- Повышение температуры вызвало бы десорбцию атомов, адсорбированных в Еа. но не в Ев- Вслед за этой десорбцией продолжался бы медленный процесс, приводящий к адсорбции атомов в Ев- Если принять эту схему, то тогда на поверхности наряду с участками, характеризуемыми высокой теплотой адсорбции и высокой энергией акти- [c.154]

    Теплота хемосорбции водорода на железе, покрытом азотогл до 0 = 0,18, действительно оказывается меньше, чем теплота хсмосорбции водорода иа чистой поверхности железа (270]. Теплота хемосорбции окиси углерода па пленке железа, частично покрытой азотом, также меньше, че.м на чистой железной пленке. Однако Багг и Томпкинс [270] нашли, что теплота адсорбции водорода на пленке железа, частично покрытой окисью углерода, выше, чем на чистой пленке. [c.162]

    Различают физическую адсорбцию, происходящую за счет дисперсионных (ван-дер-ваальсовых) взаимодействий молек ул адсор-бата с адсорбентом, образования водородных связей и других сил электростатического характера, и химическую адсорбцию (хемосорбцию), происходящую за счет образования химических связей между адсорбатом и адсорбентом. Для физической адсорбции характерны теплоты адсорбции -2 -5 кДж/моль, для химической адсорбции значения теплот обычно превышают 10 кДж/моль. Химическая адсорбция может сопровождаться диссоциацией молекул адсорбата и другими его химическими превращениями. [c.281]

    Силы, действующие на поверхности твердого тела, ненасыщены. Поэтому всякий раз, когда свежая поверхность подвергается действию газа, на ней создается более высокая концентрация молекул газа, чем в объеме собственно газовой фазы. Такое преимущественное концентрирование молекул на поверхности называется адсорбцией. Прочность связи молекул адсорбата с поверхностью адсорбента, а также величина адсорбции могут сильно меняться от системы к системе. Процессы адсорбции можно разделить на два основных типа физическую адсорбцию и хемосорбцию. Физическая адсорбция вызывается силами молекулярного взаимодействия, к которым относятся силы взаимодействия постоянных и индуцированных диполей, а также силы квадрупольного притяжения. Хемосорбция обусловлена перераспределением электронов взаимодействующих между собой газа и твердого тела с последующим образованием химических связей. Физическая адсорбция подобна конденсации паров с образованием жидкости или процессу сжижения газов, а хемосорбция может рассматриваться как химическая реакция, протекание которой ограничено поверхностным слоем адсорбента, Типы адсорбции различают по нескольким критериям 1) по теплотам адсорбции. Количество выделившейся в процессе физической адсорбции теплоты, отнесенное к одному молю адсорбированного вещества, обычно изменяется в пределах 8—40 кДж. Как правило, теплота хемосорбции превышает 80 кДж/моль 2) по скорости протекания процесса. Поскольку физическая адсорбция подобна процессу сжижения газа, то она не требует активации и протекает очень быстро. Хемосорбция же, аналогично большинству хи- [c.425]

    Теплота адсорбции кислорода на поверхности германия равна 552,29 кДж/моль. Хемосорбция происходит необратимо, и при профевании весь кислород удаляется в виде GeO. Опреде- [c.18]

    Уравнение Лэнгмюра (XIII. 106) выведено для энергетически однородной поверхности, т. е. такой, у которой все центры адсорбции характеризуются одним и тем же значением теплоты адсорбции. Во многих случаях экспериментальные данные по хемосорбции в ограниченной области давлений описываются уравнением Фрейндлиха (ХП1. 109а)  [c.769]

    Необходимым условием гетерогенного катализа является адсорбция (от лат. ай — к и зогЬеге — поглощать) молекул реагентов поверхностью катализатора. Различают два типа адсорбции в зависимости от теплоты, выделяющейся при этом. При тепловом эффекте, меньшем 40 кДж/моль, говорят о физической адсорбции при выделении более 80 кДж/моль,, что соответствует энергиям химических связей, говорят о химической адсорбции (хемосорбции). [c.138]


Смотреть страницы где упоминается термин Теплота адсорбции хемосорбции : [c.537]    [c.141]    [c.111]    [c.125]    [c.59]    [c.74]    [c.79]    [c.121]    [c.127]    [c.129]    [c.146]    [c.148]    [c.164]    [c.115]    [c.127]    [c.76]   
Физическая химия поверхностей (1979) -- [ c.473 , c.512 , c.522 , c.524 ]




ПОИСК





Смотрите так же термины и статьи:

Адсорбции теплота

Адсорбция теплота теплота адсорбции

Хемосорбция



© 2025 chem21.info Реклама на сайте