Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Гидридные ионы в реакциях

    Каталитический крекинг олефиновых углеводородов в присутствии, например, алюмосиликатных катализаторов происходите гораздо большей скоростью, чом крекинг соответствующих парафиновых углеводородов кроме того, перенос водорода является основной реакцией, особенно для третичных олефинов [17]. В то же время термический крекинг олефинов происходит, примерно, с такой же скоростью, как и крекинг парафиновых углеводородов перенос водорода в этом случае представляет собой неизбирательную реакцию, имеющую значительно меньшее значение [17]. Такие факты характерны для поведения ионов карбония и свободных радикалов. Более легкий каталитический крекинг олефинов обусловлен более легким образованием ионов карбония путем присоединения протона катализатора к олефину. Перенос водорода, при котором имеет место отщепление гидридного иона от олефиновой или парафиновой молекулы. ионом карбония (правило 5), происходит легче в случае третичных ионов, чем вторичных, и является поэтому более избирательным к третичным олефинам. Соединения, являющиеся в реакции переноса донорами водорода, превращаются в диолефины, ацетиленовые и ароматические углеводороды, а также образуют отложения па катализаторе. [c.238]


    Атом водорода является простейшим и очень активным радикалом. Радикал И стремится присоединить электрон, что может сопровождаться как образованием молекулы Нг (рекомбинация Н + Н = Нг), так и иона Н , в общем аналогичного иону галогена. В виде гидридного иона водород входит в состав гидридов металлов главных подгрупп I и II групп. Известны и комплексные соединения, содержащие гидридный ион. В ряде реакций, из которых отдельные имеют биологическое значение, доказан перенос водорода в форме гидридного иона (гидридный перенос). [c.149]

    Следует отметить, что для отрыва гидридного иона из любого вторичного положения в гексадекане необходима энергия 241,01 ккал/моль. Эта энергия настолько велика, что реакция переноса гидридного иона [c.124]

    По данным табл. 5 можно найти, что реакция будет проходить с энергией 249,5—241,0 = 8,5 ккал/моль. Отсюда следует, что образование первичного иона гексадецила путем переноса гидридного иона в данном случае маловероятно, поскольку для этой эндотермической реакции потребовалась бы теплота порядка 266,0—249,5 = 16,5 ккал/моль. [c.124]

    Перенос водорода. Перенос водорода представляет собой сумму двух детально рассмотренных выше реакций 1) захват олефином протона с образованием иона карбония, и далее 2) перенос гидридного иона от любой нейтральной молекулы углеводорода, в результате чего в качестве одного пз продуктов получается парафин, соответствующий исходному олефину. [c.133]

    Теплоты образования гидридов солеобразного типа довольно велики — порядка 80 кДж/моль. Радиус гидридного иона Н 0,154 нм лежит между радиусами иона фтора (0,133) и иона хлора (0,181). Теплоты образования летучих ковалентных гидридов во многих случаях очень резко (в отличие от ионных гидридов) изменяются при переходе от группы к группе. Реакции образования некоторых летучих гидридов из элементов эндотермичны (рис. П1.4). [c.289]

    В предложенной для объяснения этой реакции схеме механизма предполагается равноценность между а- и р-углеродны-ми атомами и последующей миграцией метильной группы вместо миграции гидридного иона в промежуточном п-комплексе  [c.191]

    При попытке доказать описанный механизм встречается серьезная трудность. При получении энергетических соотношений для реакции (41) необходимо допустить, что гидридный ион стабилизован за счет энергии гидратации, которая соответствует устойчивому иону того же размера, что и гидридный ион. Однако, учитывая высокую реакционную способность гидридного иона [c.212]


    И последнее давайте обсудим возможность другого механизма функционирования ЫАО+, не включающего перенос гидрид-иона. Так, Гамильтон считает, что если в дегидрогеназных реакциях происходит процесс непосредственного переноса гидридного иона, то этот процесс является уникальным в биологии, так как более благоприятен перенос протона [279]. Однако различить эти две возможности нелегко. В общем, проще сказать, что реакция восстановления аналогична переносу двух электронов, чем постулировать сун1,ествование гидрид-иона. К этой проблеме мы еще вернемся в разд. 7.1.3 в связи с флавиновым коферментом. [c.406]

    В лабораторных условиях практическое значение имеет превращение вторичных спиртов в кетоны по Оппенауэру. Эта реакция обратима и протекает в присутствии алкоголятов алюминия, причем в качестве акцептора гидридного иона используется ацетон  [c.204]

    Согласно Коупу, образование диола 111 объясняется тем, что атом водорода при С4 в восьмичленном цикле пространственно сближен с 1,2-окисным кольцом и участвует в реакции замещения, приводящей к раскрытию этого кольца. Можно предполагать, что реакция протекает путем 4 2-сдвига гидридного иона в протонированном оксиде П с одновременной атакой молекулой растворителя образующегося С4-карб-ониевого иона. Этот эффект сближенности, или трансаннулярный эффект, по-видимому, обусловлен особой конформацией средних колец. В более поздней работе Коупа и его сотрудников (1960) было показано, что при сольволизе оксида 1 муравьиной кислотой получаются помимо цис-циклооктандиола-1,4 (III) также два других аномальных продукта — циклооктен-З-ол-1 и циклооктен-4-ол-1. Исследования с оксидом I, меченным дейтерием по С5 н Се, позволили установить, что циклооктан-диол III образуется на 61 7о путем 1,5-гидридного сдвига и на 39% путем 1,3-гидридного сдвига, тогда как циклооктен-З-ол-1 получается почти полностью в результате 1,5-сдвига (94%) и лишь в небольшой степени (6%) путем 1,3-сдвига гидридного иона. [c.95]

    В последней реакции литийалюминийгидрид действует по существу как носитель гидридного иона Н" [c.114]

    Если реакцию Канниццаро проводить со смесью альдегида и формальдегида, то последний всегда выступает в роли донора гидридных ионов и окисляется при этом до муравьиной кислоты (перекрестная реакция Канниццаро)  [c.184]

    Побочные процессы при реакциях Гриньяра наблюдаются в особенности тогда, когда по пространственным причинам невозможно образование циклического переходного состояния I [схема (Г.7.180)]. Если карбонильное соединение или реактив Гриньяра имеют объемистые заместители, то в циклическом комплексе находится место только для одной молекулы магнийорганического соединения. В этих случаях на карбонильную группу часто переносится не алкил, а меньший по объему гидридный ион. В результате происходит восстановление карбонильной груплы, а магнийорганическое соединение превращается в олефин (гриньяровское восстановление)  [c.197]

    Оксидный и гидридный ионы также вступают в реакции подобного типа [c.327]

    Подобными реакциями, сопровождающимися отрывом гидридного иона от третичного углерода макромолекулы, можно объяснить образование низкомолекулярных полимеров при катионной полимеризации таких а-олефинов, как пропилен. [c.153]

    Согласно механизму А [85], молекула парафина может хемосорбироваться с прямым отрывом гидридного иона катализатором, который действует или как кислота Льюиса (эти центры обозначены символом й) или через непосредственную реакцию с бренстедовскими кислотными центрами катализатора, сопровождающуюся выделением водорода. Механизм В [84] предполагает, что единственными активными центрами образования иона карбония являются центры с бренстедовской кислотностью этот механизм допускает, что только олефины могут реагировать непосредственно с поверхностью, образуя ионы карбония, которые затем действуют как инициаторы реакций парафинов. В соответствии с этим парафины могут превращаться в ионы карбония только путем гидридного переноса к этим инициирующим и предварительно адсорбированным ионам карбония. Было предположено, что возможными источниками [c.70]

    Трудно сказать что-либо определенное о стерическом результате реакций внедрения, так как факторы, влияющие на него, еще не вполне понятны. Связи металл—углерод и металл—водород реагируют с олефинами, с одной стороны, подобно гидридным ионам и карбанионам (где наименее замещенный атом углерода связан с металлом), а с другой, — подобно протонам и ионам карбония (где наиболее замещенный атом углерода связан с металлом). [c.170]

    Такое течение реакции позволяет миновать стадию дегидрирования субстрата до олефина, а также не требует отрыва гидридного иона от насыщенной молекулы. [c.25]

    Стадии образования и перегруппировки карбоний-иона нри гидроизомеризации в основном совпадают с аналогичными стадиями, протекающими в присутствии галогенидов алюминия. На этом аналогия может заканчиваться, так как возможно, что гидроизомеризация протекает не по цепному механизму. Так, после перегруппировки карбоний-ион вместо отнятия гидридного иона от исходной молекулы может или отнять гидрид, находящийся в виде диссоциировавшего водорода на поверхности металла [62, 96], или отщепить протон, образ я при этом алкен, гидрирование которого и дает конечный продукт реакции. [c.100]


    Далее на примере м-гексадекана будет рассмотрен типичный крекинг нормальных парафинов. Как уже говорилось выше, промежуточным продуктом реакции в этом случае является ион, имеющий на один атом водорода меньше, чем соответствующий парафин таким образом промежуточный продукт будет иметь эмпирическую формулу С 9Нзз+, которая идентична формуле иона соответствующего олефина (м-гексадецена-1). Однако в этом случае промежуточный продукт не образуется путем простого присоединения протона к двойной связи для этого потребуется скорее отщепление гидридного иона (Н ) согласно общему уравнению реакции  [c.122]

    Должно быть объяснено также присутствие алкильного иона, такого, как вто/>-пропил-ион. Вообще вполне целесообразно предположить наличие при крекинге предельных углеводородов некоторого термического крекинга, или окисления, приводящих к образованию олефинов. Последние, в свою очередь, быстро образуют над кислотным катализатором ионы карбония Л+, которые затем и инициируют указанную выше реакцию переноса гидридного иона так образуются требуемые ионы карбония из парафинов. Доказательство переноса гидридного иона между третичными структурами в низкотемпературных системах над кислыми катализаторами может быть найдено в работе Бартлетта [1]. Брюйер и Гринсфель-дер [5] установили обмен вторичного гидридного иона с третичным галоидным ионом в аналогичных системах, распространив таким образом этот механизм на важные структуры типа нормальных парафинов и неза- [c.124]

    С т а д и я 5. В случае системы, содержащей парафиновые углеводороды, конечный небольшой относительно труднокрекируемый ион карбония вновь претерневает перенос гидридного иона, как в стадии 1, с образованием низкомолекулярного парафина и нового иона карбония большой воличины. При крекииге олефинов конечный малый ион карбония может возвратить протон ката. гизатору или перенести протон на более крупную молекулу олефина и образовать новый высокомолекулярный ион карбония в обоих случаях конечный ион карбония сам превращается в низший олефин. Последняя реакция имеет вид  [c.126]

    Образование ионов карбония из предельных углеводородов. Парафиновые и циклопарафиновые углеводороды обычно образуют ионы карбония путем отдачи гидридного иона иону карбония (правило 5) [I], причем гидридные ионы, присоединенные к третичным атомам углерода, в большинстве случаев легко отщепляются. Образовавшийся ион карбония претерпевает одно или несколько упомянутых выше превращений, прежде, чем он, в свою очередь, отнимет гидридный ион от другой молекулы предельного углеводорода. Таким образом происходит цепная реакция, для начала которой достаточно присутствие следов иона карбония, иниции рующег о ре акцию. [c.216]

    Реакция, катали.чируемая галогенидами металлов. Галоидводородный обмен имеет место в том случае, когда предельные углеводороды, содержащие третичные атомы углерода, реагируют с галоидными алкилами в присутствии хлористого алюминия [1]. Нанример, в результате взаимодействия изопентана с третичным хлористым бутилом в присутствии бромистого алюминия при времени контакта около 0,001 сек. образуется т/)ет-амилбромид (50—70% от теоретического выхода) и изобутан. Эту реакцию можно рассматривать как доказательство способности иона карбония отнимать гидридный ион в соответствии с правилом 5. Механизм обмена можот быть выражен следующим образом  [c.217]

    Попытки осуществить реакцию обмена менщу этаном и третичным бутилброд1идом в присутствии бромистого алюминия оказались безуспешными, и это свидетельствует о том, что отщепление гидридного иона от первичного атома углерода связано со значительными трудностями [3]. [c.218]

    В настояш,ее время кислотный характер алюмосиликатных катализаторов крекинга не вызывает сомнения. Например, такие катализаторы можно титровать едким калием или такими органическими основаниями, как хинолин. Кислотные свойства катализаторов обусловлены, вероятно, присутствием протонов на их поверхности, активной частью которой может быть либо кислота трша (НА13104)ж [62], либо атомы алюминия с дефицитом электронов [37, 61]. Обсуждение теорий, предложенных для объяснения кислотности алюмосиликатных катализаторов не является целью, настоящей главы. Для данного изложения необходимо только указать, что ион карбония Д" ", инициирующий ценную реакцию, может образоваться либо [1] в результате реакции кислотного катализатора с олефином, который образуется при начальном термическом крекинге, либо путем дегидрирования парафинового углеводорода,. либо в результате отщепления гидридного иона от молекулы парафинового углеводорода атомом алюминия с дефицитом электронов [2]. [c.236]

    В качестве восстановителя в этом случае часто применяют литий-алюминийгидрид Ь1А1Н4. Действие его избирательно. Восстанавливая карбонильную группу, он не затрагивает двойную углерод — углеродную связь (в ненасыщенных альдегидах и кетонах). Реакция восстановления идет с участием гидридного иона (Н )  [c.128]

    Из схемы (3) видно, что первая стадия реакции — протонирование молекулы алкана, процесс, типичный для кислотного катализа,— завершается во второй стадии восстановлением присоединившегося протона за счет окисления органической молекулы до карбониевого иона. Таким образом, в области очень высокой кислотности среды граница между кислотно-основными и окислительно-восстановительными процессами стирается. Активность протонов и их электрофильность настолько велика, что протоны приобретают свойства акцепторов гидридных ионов, т. е. гетеролитичес-ких окислителей. [c.9]

    Работа цикла начинается с реакции между ацетилкоферментом А и щавелевоуксусной кислотой при этом образуется лимонная (трикарбоновая) кислота. Дальнейшие превращения показаны на схеме, из которой видно, что водород присоединяется к частицам переносчиков НАД+ и НАДФ+ (вероятно в форме гидридного иона), а также к ФЛ (флавопротеиды). [c.369]

    При сравнении гидроизомеризующих катализаторов с галогенидами алюминия и серной кислотой следует особо отметить способность гидроизомеризующих катализаторов превращать алканы нормального строения в изоалканы. Следовательно, эти катализаторы ближе к галогенидам алюминия, чем к серной кислоте. Если гидроизомеризация является цепной реакцией, то в противоположность серной кислоте эти катализаторы способны промотировать передачу гидридного иона от вторичного углерода третичному. [c.102]

    Эта реакция по существу сводится к миграции метйльной труппы в кар-бопий-иопе. Она неожиданна, так как обычно более вероятной считают миграцию гидридного иона. Но миграция гидридного иона приводила бы к образованию изопронилбензола. Одно из возможных объяснений этой реакции заключается в том, что характер связи, соединяющей ион с кольцом, влияет на катион таким образом, что миграция гидридного иона не происходит. В присутствии хлористого алюминия этил-р-С -бензол остается непре-вращенным [105]. Согласно предложенному механизму изомеризация этил-р-С -бензола может протекать только в результате миграции гидридного иона  [c.104]

    Специфическая роль третичных водородных атомов в распространении карбоний-ионов отмечается в реакциях крекинга и риформинга, протекающих при высоких температурах в присутствии твердых катализаторов. Связь углерод — углерод характеризуется наличием электронной пары, поделенной между двумя углеродными атомами. В углеводороде, в котором протекает скелетная перегруппировка, должна разрываться по крайней мере одна такая связь при этом электроны могут быть поделены поровну (образование свободного радикала) или один углеродный атом сохраняет оба электрона, в то время как при другом не остается ни одного (образование иона). Энергетические барьеры для обоих этих случаев сильно различаются так, для образования двух нропильных радикалов из к-гексана требуется всего 76 ккал [69], в то время как для образования пары нропильных ионов требуется 260 ккал [67. Однако в присутствии надлежащим образом выбранного катализатора, особенно если он обладает в какой-то стенени ионной функцией, может инициироваться предварительная стадия — образование положительно заряженного иона за счет передачи протона или гидридного иона. После этого разрыв связи углерод — углерод происходит в результате образования из нестабильного карбоний-иона положительно заряженных ионных осколков и нейтральной молекулы алкена или ароматического углеводорода. [c.170]

    Характер реакции можно изменять соответствующим выбором катализатора п режима процесса. В литературе описаны опыты [33], в которых в качестве катализаторов применяли никель на кизельгуре и никель на кислотном носителе. Никель на кизельгуре катализирует ступенчатое последовательное деметанирование алкановой цепи, а при реакциях алкил-циклонентанов вызывает разрыв кольца. В присутствии никеля на алюмосиликате деметанирование протекает слабо и реакция приводит к отщеплению более крупных осколков. При применении одного только кислотного носителя ни гидрокрекинг, ни деметанирование пе протекают. Очевидно, что для отщепления от углеводородной цепи осколков крупнее метана необходимо присутствие как гидрирующего, так и кислотного компонента катализатора. Реакция, вероятпо, протекает путем передачи гидридного иона катализатору с образованием карбоний-иона, последующее расщепление которого дает алкен и новый карбоний-ион. [c.184]

    Существует группа реакций, в которых гидрид-ион переносится от атома углерода. Связь углерод—водород имеет низкую полярность и мало склонна к разрыву, требуемому для гидридного переноса. Такие реакции обычно протекают через циклические переходные состояния, в которых новые С—Н-свяаи образуются одновременно с разрывом старых. Гидрндпый перенос облегчается за счет высокой плотности заряда на атоме углерода, сдужгицем донором гидрид-иона. Реакция Канниццаро — катализуемое основаниями диспроцорциомирование альдегидов— является одним из примеров подобных реакций гидридного переноса,. Ее общий механизм приведен ниже  [c.130]

    Однако анализ схем самоинициирования катионной полимеризации кислотами Льюиса, в том числе и описанных в [4], позволяет сделать вывод о достаточной специфичности этих реакций, поэтому в лучшем случае эти схемы приемлемы лишь для конкретных систем и условий процесса. Так, прямое присоединение кислоты требует ее большого избытка, самоионизация - присутствия полярного растворителя, а формирование гидридного иона - обязательного наличия у мономера лабильного (например, аллильного) водорода. [c.39]

    Можно предполагать, что в реакциях переноса атома водорода, протона или гидридного иона валентное колебание переносимого водорода почти или совершенно исчезает в переходном состоянии. Если это колебание совсем исчезает, то при переносе О или Т энергия переходного состояния будет такой же, как и при переносе Н, однако увеличение энергии при образовании переходного состояния из реагентов будет в случае дейтерия на 1200—1500 кал больше, чем в случае протия, а в случае трития еще больше. Если не действуют другие факторы, то скорость переноса дейтерия должна быть в 8—12 раз меньше скорости п реноса протия. [c.164]


Смотреть страницы где упоминается термин Гидридные ионы в реакциях: [c.137]    [c.218]    [c.220]    [c.208]    [c.49]    [c.181]    [c.153]    [c.48]    [c.48]    [c.8]    [c.398]    [c.141]   
Изотопы в органической химии (1961) -- [ c.0 ]




ПОИСК







© 2025 chem21.info Реклама на сайте