Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Катализаторы см переходные металлы

    При этом атомарный (или ионный) водород, предварительно адсорбированный на катализаторе в непосредственной близости от реагирующей молекулы углеводорода, входит в состав переходного комплекса и далее, после перераспределения электронной плотности, регенерируется уже в молекулярном виде. Наличие поляризованного (и даже ионного) водорода на поверхности металлов в условиях реакции подтверждается работами различных авторов [129—131]. Так, после анализа экспериментальных данных, полученных при изучении адсорбции водорода на Pt, Ni и других металлах в условиях глубокого вакуума, сделан вывод [130] о существовании двух основных видов хемосорбции водорода слабой (обратимой) и прочной (необратимой). Слабо хемосорбированный водород находится, как правило, в молекулярной форме и несет при этом положительный заряд (М —Hj). При прочной хемосорбции водород диссоциирован и заряжен отрицательно (М+—Н-). При анализе состояния водорода в гидридах различных металлов [131] сделан вывод, что в гидридах большей части переходных металлов водород находится в двух формах Н+ и Н при этом форма (М+—Н ) является основной. [c.231]


    Образование циклогексена наблюдалось [91] при селективном гидрировании бензола в водных системах в присутствии Ru/СаСОз, Ru/ a (ОН) 2 и Ru с добавками Fe, Со, Ni на носителях Са(0Н)2 или АЬОз при 180— 200 °С и давлении 6,9 МПа. Установлено, что добавка ионов переходных металлов (в небольших концентрациях) снижает активность Ru-катализаторов на носителях, но увеличивает селективность образования ц лоалка-нов. Предполагают, что активные центры Ru, на которых образуется циклогексен, модифицируются хемосорбцией ионов Fe, Ni, Со и что промежуточные циклоалкены образуются на тех же центрах, на которых при повышенных температурах происходит гидрирование бензола и этих промежуточных циклоалкенов. [c.49]

    Существуют два предположения о механизме окисления коксовых отложений [3.32]. При первом предположении исходят из возможности образования кислород-углеродных комплексов при адсорбции кислорода на поверхности углерода. Роль катализатора в данном случае сводится к ускорению процессов образования или распада этих комплексов. При втором предположении катализатор рассматривают как переносчик кислорода между газовой фазой и углеродной матрицей путем попеременного окисления-восстановления катализатора. К такого типа катализаторам обычно относят оксиды переходных металлов. [c.69]

    К органическим реакциям, протекающим на поверхности гетерогенных катализаторов (переходные металлы, оксиды металлов и другие металлсодержащие соединения), можно применить представления о координационной и металлоорганической химии гомогенного металлокомплексного катализа. [c.693]

    Благодаря возможности кислородного обмена с окислами переходных металлов водяной пар играет значительную роль в окислительно-восстановительных процессах, проходящих на поверхности катализаторов на их основе. [c.10]

    Задача 11.4. Пользуясь правилами табл. 60, объясните, почему в присутствии в качестве катализаторов переходных металлов запрещенные по симметрии реакции (Л8 -1-Яз )-циклоприсоединения легко протекают без фотохимического возбуждения. Рассмотрите различные способы выбора системы базисных орбиталей. [c.327]

    Исходные компоненты каталитических систем не всегда содер-, жат металл-углеродные связи. Эти связи могут возникать в процессах взаимодействия катализатора с мономером, в частности при внедрении последнего по связи металл — лиганд или окислительного присоединения к переходному металлу. [c.105]

    В этом разделе затронуты вопросы только химии металлорганических соединений переходных металлов. Однако в этой области в настоящее время проведено много интересных исследований. Химия этих соединений имеет большое практическое значение, так как предполагают, что реакции этих соединений оказывают существенное влияние на активность катализаторов — переходных металлов в разнообразных органических системах. [c.125]


    При первом варианте (I) Ад сначала хемосорбируется с диссоциацией на два атома, связанные с поверхностью катализатора — переходного металла Ме. Затем они отделяются друг от друга поверхностной диффузией и, наконец, независимо друг от друга десорбируются последовательно с поверхности. [c.20]

    Уже сейчас метод инфракрасной снектроскопии широко применяется для изучения поверхностных соединений, устойчивых нри комнатной температуре. Так, например, этанол разлагается на поверхности никеля, образуя устойчивый фрагмент адсорбированной окиси углерода (см. стр. 22). При адсорбции ацетилена на металлах образуются олефиновые соединения. Это поверхностное промежуточное соединение может быть впоследствии гидрировано с образованием на поверхности насыщенного углеводорода, обогащенного метиленовыми группами. Как отмечалось на стр. 152 и 171, эти поверхностные олефиновые соединения гидрируются и десорбируются с поверхности сравнительно медленно, поэтому маловероятно, что именно они являются промежуточными продуктами таких быстрых реакций, как полное гидрирование этилена до этана на катализаторах переходных металлов. Были получены инфракрасные спектры адсорбированного на металлах этилена на различных стадиях гидрирования. Однако вопросы механизма гидрирования этого олефина все еще не решены даже после исследований методом инфракрасной спектроскопии. [c.491]

    Лишь в 1955 г. был описан успешный синтез алмаза из графита. Графит прямо превращается в алмаз при температуре около 3000 К и давлениях выше 125 кбар. Но для получения приемлемых скоростей превращения используются в качестве катализаторов переходные металлы, такие, как хром, железо и платина. Весьма вероятно, что графит растворяется в тонкой пленке образующегося на нем расплавленного металла, а затем высаживается в виде алмаза, растворимость которого ниже. Алмазы размером до 0,1 карата (20 мг), обладающие высокими промышленными качествами, можно производить рутинным способом и цо сравнительно доступным ценам. Удалось получить также некоторые типы ювелирных алмазов, но стоимость этого производства до сих пор еще слишком высока. Алмаз загорается на воздухе [c.307]

    Для гетерогенных катализаторов также найдено, что в зависимости от кристалличности поверхности атомы могут иметь различные межъядерные расстояния, различное число ближайших соседей (и, следовательно, различное число мест, пригодных для координации субстрата), различные энергетические уровни с различным заполнением их электронами. Поэтому каждая плоскость кристалла аналогична только какому-либо одному, отдельно взятому комплексу. В большинстве гетерогенных катализаторов переходный металл или его соединение нанесены на подложку, например окись алюминия. При рассмотре- [c.426]

    Механизм гидрогенизации ненасыщенных углеводородов на катализаторах — переходных металлов. [c.403]

    В роли металлорганической компоненты катализатора вместо органических производных элементов I—IV групп периодической системы могут также быть использованы я-аллильные комплексы переходных металлов (циркония, хрома, никеля) [53]. [c.214]

    Миграция двойной связи и цис — транс-изомеризация может также проходить и на так называемых крекирующих катализаторах, представителями которых являются окись алюминия, силикагель и алюмосиликаты. Эти катализаторы могут действовать как доноры протонов, т. е. как кислоты Бренстеда, а в связи с дефицитом электронов в них — и как кислоты Льюиса. В то время как при использовании в качестве катализаторов переходных металлов энергия активации зависит от работы возбуждения электрона при его переносе из электронных зон, при применении крекирующих катализаторов на энергию активации влияет кристаллическое поле структурной ячейки твердого кристаллического катализатора. Ниже будет показано, что каталитическое гидрирование можно осуществить с помощью металлоорганических комплексов, каталитическая активность которых определяется природой и силой органических лигандов, связанных с центральным ионом металла молекулы комплекса. В большинстве этих катализаторов имеются и бернстедовские и льюисовские центры, как это следует из данных ИК-спектров поглощения адсорбированными ЫНз и МН4 или данных по адсорбции красителей. Спектры ЭПР адсорбированных на алюмосиликатных катализаторах этилена и бутена-2 выявляют и карбониевые ионы и комплекс на более кислой части субстрата. Однако адсорбированный трифенилметан дает карбониевый ион на льюисовском центре. [c.202]

    Катализаторы. С тех пор как в 1957 г. в патенте фирмы Дюпон [3] была впервые упомянута возможность полимеризации циклоолефинов (в том числе и циклопентена) с раскрытием кольца, в периодической и патентной литературе появились сотни публикаций, посвященных этому вопросу. При всем разнообразии предложенных различными авторами каталитических систем у них имеется одна общая черта необходимость применения переходного металла IV—Vni групп периодической системы элементов. Элементы, обладающие каталитической активностью в процессах полимеризации циклоолефинов с раскрытием кольца, приведены ниже  [c.318]


    Молекулярный водород не очень реакционноспособен. С галогенами водород реагирует после инициирования по радикально-цепному механизму. Обычно при нагревании молекула Нг гомолнтически расщепляется. Образующийся атомарный водород восстанавливает, к примеру, многие оксиды до низщих оксидов или до металлов (разд. 36.2.1). В присутствии платинового, никелевого или палладиевого катализаторов водород вступает в реакции уже при комнатной температуре. Каталитическое действие оказывают также соединения некоторых тяжелых металлов или их ионы. Например, ионы Ag+ и Мп04 восстанавливаются молекулярным водородом. Реакции водорода при низких температурах протекают вследствие образования реакционноспособной связи с металлом-катализатором (переходным металлом). При этом происходит поляризация молекулы водорода. [c.464]

    Переходные металлы являются активными катализаторами в подавляющем большинстве окислительно — восстановительных реакций. Железо, например, является классическим ката/шзатором синтеза аммиака. Кобальт, никель, медь и металлы ш атиновой группы проявляют высокую активность в процессах гидрирования и дегидрирования, а также окисления. Серебро является практически единственным катализатором парциального окисления (например, этилена до его окиси). [c.93]

    Помимо rt-аллилникельгалогенидов в качестве катализаторов полимеризации 1,3-диеновых углеводородов могут быть использованы я-аллильные комплексы и других переходных металлов. Чистые я-аллильные комплексы родия образуют гране-1,4-полибутадиен, а комплексы ниобия, титана и хрома — полибутадиен с высоким содержанием 1,2-звеньев [32, 49, 50]. Бис(я-аллил)ко-бальтгалогениды и трис(я-аллил)урангалогениды дают цис-, 4-полибутадиены [49, 51]. Бис(я-аллил)никель в присутствии бис(я-аллилникельхлорида) превращает бутадиен в циклические олигомеры с молекулярной массой 500—600 [52]. [c.104]

    Как видно из приведенных выше экспериментальных данных, путем подбора соответствующих катализаторов можно синтезировать полидиены с любой микроструктурой. В первую очередь, микроструктура полимеров определяется природой переходного металла катализатора. Как правило, соединения металлов VIII группы (кобальта, никеля, родия, железа), а также титана и ванадия являются более подходящими для синтеза 1,4-полибутадиенов комплексы металлов V и VI групп (хрома, молибдена, вольфрама, ниобия) и палладия дают полимеры с боковыми винильными звеньями. В то же время стереоселективность катализаторов может быть существенно изменена путем введения в состав каталитических комплексов различных лигандов. [c.105]

    А. щелочных металлов, Са, Sr, Ва, Zn и d получают растворением соответствующего металла, его гидрида или металлоорг. соед. в жидком NHj в присут. катализаторов-переходных металлов или их солей. А. других металлов м.б. приготовлены также путем обменной р-ции KNH2 с солями этих металлов в среде жидкого NHj. Многие А. переходных металлов образуются при аммонолизе солей этих металлов жидким NHj. [c.128]

    Кро.ме того современные прогрессивные методики получения важных органических соединений базируются на использовании процессов, катализируемьгх комплексами переходных металлов. Важнейшей особенностью реакций, катализируемых комплексами переходных металлов является возможность их осуществления в мягких условиях с высокой регио- и стереоселективностью. Правильный подбор катализатора (переходного металла и лиганда) и условий реакций позволяет осуществить синтезы практически важных соединений с количественными выходами. [c.6]

    Сходны с катализаторами Циглера — Натта окиснометаллические, которые получают нанесением дисперсии окисей переходных металлов (СгОз, МоОз, УаОз, НЮз и др.) на носители (окись алюминия, силикагель, алюмосиликаты и др.) с последующим восстановлением (активацией) водородом, окисью углерода, МаН, НаА1Н4 или другими восстановителями среди них наиболее эффективны окисно-хромовые катализаторы (21]. Так же как в случае обычных комплексных катализаторов, переходный металл проявляет наибольшую активность, когда он находится в промежуточной степени окисления. Полимеризация протекает при сравнительно высоких температурах порядка 100—200°С. Несмотря иа низкую стереоспецифичпость окиснометаллических катализаторов, они представляют промышленный интерес для получения полиэтилена линейного строения. [c.187]

    Гоффманом, Имамура и Цейссом [76, 77]. Манго и Шахтшнейдер [78, 79 ] показали, как дестабилизация термического взаимодействия между двумя олефиновыми связями может быть ослаблена электроно-донорным и электроноакцепторным взаимодействием с -орбиталями катализаторов — переходных металлов. Хотя эти авторы учитывали только я-злектроны олефинов, в работах [80, 81 ] была показана потенциальная важность учета ст-электронов С—С-связей. Взаимодействия такого типа могут также быть рассмотрены с использованием уравненией (1) и (2) [5]. [c.35]

    Этот раздел завершает краткий обзор состояния гетерогенного обмена ароматических и ненасыщенных соединений с изотопным водородом на катализаторах — переходных металлах. Очевидно, что механизмы для этих реакций, основанные на я-комплекс-ной адсорбции, обладают значительными преимуществами по сравнению с ранними классическими теориями, связывая теоретические параметры н химические свойства ароматических реагентов и катализаторов. В частности, интерпретация гетерогенных реакций через промежуточное образование я-комплексов позволяет предположить существование аналогичной области исследований в катализируемых металлами гомогенных реакциях изотопно-водородного обмена с использованием растворимых солей переходных металлов VIII группы. [c.107]

    Каталитическое гидрирование ненасыщенных соединений. Гетерогенный катализ. Водород в присутствии многочисленных металлических катализаторов (переходных металлов — Рб, Р1, НИ, Ни, N1), а также комплексных катализаторов (СиСг204) может присоединяться к кратным [c.497]

    Исследовано [261] гидродеалкилирование толуола в присутствии металлов, отложенных на полиамидах. Исследована активность и селективность Р1, КЬ и Р(1 (0,4—5,1% металла), нанесенных на поли-п-фенилентерефталамид, при 140—400 °С. Показано, что катализаторы, полученные нанесением соединений металлов на этот полиамид, имеют низкую гидрирующую активность, в то же время реакция гидродеалкилирования протекает на них при более низких температурах, чем на катализаторах, где в качестве носителей применяются АЬОз или активированный уголь. Был сделан вывод, что гидрирующая активность и селективность металлов, отложенных на полиамидах, обусловлена влиянием носителя и образованием поверхностных активных комплексов. Предполагают, что в этих комплексах атомы переходного металла с валентностью больше нуля координационно связаны с амидной группой полимерной цепи. [c.175]

    Гидрирование — реакция присоединения, осуществимая для большинства ароматических систем. Термохимические данные по гидрированию наряду с данными о теплотах сгорания послужили базой для расчета эмпирической ЭР — одного из первых количественных критериев ароматичности (см. разд. 1.3.3), Молекулярный водород, как правило, не взаимодействует с ароматическими соединениями в отсутствие катализатора даже при высокой температуре. При гетерогенном катализе [1081, 1082] реакция гидрирования протекает на поверхности катализатора— переходного металла У1П группы, который адсорбирует водород и органическое соединение. В результате адсорбции водорода связь между атомамиг в его молекуле ослабевает и гомолитически разрывается, после чего происходит последовательное присоединение свободных радикалов — атомов водорода. При гомогенном катализе [212, 1083] водород активируется За -результате включения в координационную сферу комплекса переходного металла, например I [c.478]

    Как и при применении в качестве катализаторов переходных металлов, при использовании алюмосиликатных катализаторов возможны два механизма образования кар-бониевых ионов. На бренстедовских центрах может идти реакция присоединения с образованием полугидрированного комплекса так, бренстедовский протон может превратить бутен в бутилкарбониевый ион [c.205]

    Существование закономерной связи между токсичностью и петоксичностью ионов, с одной стороны, и структурой их -оболочек, с другой стороны, представляет значительный интерес с точки зрения ионимания природы связи, образующейся между ядо.м и поверхностью катализатора. Отравление платины и по-добны.х ей контактов ионами металлов включает, вероятно, образование адсорбционных комплексов, которые в некотором отношении можно рассматривать как интерметаллические соединения. Из таблицы видно, что токсичность, а именно способность образования прочных адсорбционных связей, свойственна, повидимому, тем металлам, у которых все пять орбит -оболочки, непосредственно предшествующих 5- или р-валентным орбитам, заняты электронными парами или, по крайней. мере, одипочны.ми -электронами. Так как токсич1юсть ие наблюдается в случаях, когда имеются незанятые электронами -уровни или когда -орбиты вообще невозможны, как, например, у легких металлов в невозбужденных состояниях, то представляется вероятным, что -электроны участвуют в образовании интерметаллической связи между токсичным металло.м и поверхностью катализатора. Таким образом, токсичные. металлы отличаются от каталитических ядов, содержащих элементы групп V и VI периодической системы, которые, повидимому, образуют прочные связи с входящими в катализатор переходными металлами за счет 5- и р-валентных электронов. [c.126]

    В цикле работ Ю. И. Ермакова с сотр. [45—48] по исследованию реакции гидрогенолиза алканов изучены каталитические системы, полученные взаимодействием металлорганических соединений переходных металлов с поверхностью носителей. В частности исследован гидрогенолиз этана и неопентана на следующих металлах, нанесенных на 5102 Р1, Р1, Мо—Р1, Рд, У—Р(1, Мо—Рс1. Приготовление этих катализаторов включает две стадии 1) закрепление на поверхности носителя ионов Ш или Мо 2) нанесение металл-органпческих соединений Р1 или Р(1 с последующим их восстановлением. Найдено [45], что при гидрогенолизе этана активность Р1-ка- [c.96]

    Классическими примерами [1] могут служить использование железа и переходных металлов в известном синтезе N113 из N2 и Нг по методу Габера, применение тонко размельченной платины в синтезе ЗОз (для НгЗО ) из 80г и О2, использование алюмосиликагелей при каталитическом крекинге нефти и применение кобальтового катализатора в синтезе (Фишера — Тропша) углеводородов из СО и Нг- [c.531]

    Переходные металлы являются хорошими избирательными катализаторами для дегидрогенизации. Однако на примере С2Н5ОН и НСООН было показано [И], что физическое состояние катализатора, так же как его химическая структура, может влиять на относительные скорости двух параллельных реакций. [c.540]

    Развиваемые выше представления о механизме стереорегулирования в процессах полимеризации диеновых углеводородов катализаторами на основе переходных металлов могут быть также использованы при рассмотрении реакций образования полидиенов в присутствии щелочных металлов или соответствующих им ме-таллорганических соединений, особенно соединений лития (табл. 8). [c.126]

    Исследовались радикалы, десорбирующиеся с поверхности катализаторов глубокого окисления иа основе оксидов переходных металлов, в реакциях окисления углеводородов, аминов и спиртов [1.31, 1,32], [c.15]

    Окислы, сульфиды и гидриды металлов образуют переходную форму между кислотно-основными катализаторами и металлами так например, они являются катализаторами реакций гидрогениза ции-дегидрогенизации, так же, как и многих реакций (крекинг изомеризация и т. д.), для которых катализаторами служат ки слоты. Химическая активность окислов связана с наличием двух [c.312]


Смотреть страницы где упоминается термин Катализаторы см переходные металлы: [c.71]    [c.43]    [c.2]    [c.273]    [c.306]    [c.193]    [c.82]    [c.187]    [c.289]    [c.160]    [c.13]    [c.299]   
Основы химии полимеров (1974) -- [ c.501 , c.504 , c.520 , c.521 ]




ПОИСК





Смотрите так же термины и статьи:

Металлы переходные



© 2024 chem21.info Реклама на сайте