Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Синтезы органических веществ метана

    По Юри, органические соединения образовывались в атмосфере за счет действия ультрафиолетовой радиации и электрических разрядов. Миллер полагает, что в результате фотолиза метана, аммиака или воды образовались атомы водорода, которые, взаимодействуя с окисью углерода, дали формальдегид и глиоксаль активирование азота обусловило его реакцию с метаном и другими углеводородами, в результате которой образовалась синильная кислота. По-видимому, в этом процессе участвуют радикалы Н и ЫНг. Действие радиации высокой энергии, вероятно, играло не меньшую роль. В 1951—1952 гг. был проведен синтез органических соединений из углекислоты и воды, причем применялся циклотрон на 40 Мэе, в котором ускорялись а-частицы. В небольшом количестве была получена муравьиная кислота формальдегид образовывался только в присутствии ионов железа, которые, по Миллеру, служили восстановителями по-видимому, окислительные условия не способствуют синтезу органических веществ [7]. Позже Кальвин с сотрудниками повторил эти опыты, применив линейный ускоритель (5 Мэе) так, что поток частиц проходил через смесь метана, аммиака и воды. Изотопная методика позволила обнаружить в продуктах реакции аланин, глицин, другие аминокислоты, мочевину, жирные кислоты, оксикислоты и сахара. Следовательно, действия одного только фактора уже оказалось достаточным, чтобы создать целый набор веществ, крайне важных для синтеза сложных органических веществ. Пути этого синтеза, несмотря на их разнообразие, как правило, уже связаны с каталитическими процессами .  [c.45]


    Характеристическим летучим водородным соединением углерода является метан. В обычных условиях водород с углеродом не реагирует. Синтез метана идет только при достаточно высокой температуре и в присутствии катализатора (мелкораздробленный никель). Применяются также и другие способы получения метана из сложных органических веществ. В лаборатории метан можно получить разложением карбида алюминия водой. В природе метан постоянно образуется при разложении органических веществ без доступа воздуха. Химическое строение метана определяется р -гибридизацией атома углерода. Молекула метана представляет собой правильный тетраэдр, в центре которого находится атом углерода, а по вершинам — атомы водорода. Метан — газ легче воздуха, почти нерастворим в воде, устойчив вплоть до 1000° С. Выше этой температуры разлагается с образованием ацетилена и водорода  [c.362]

    Количество данных, касающихся биосинтеза аминокислот, очень велико, но о ранних стадиях биосинтеза известно меньше, чем о более поздних. Современные представления о механизмах превращения газообразного азота в аммиак у растений изложены в специальной монографии [1]. Миллер [2] сделал очень интересную попытку подойти к решению проблемы первичного образования органических веществ на земле он показал образование аминокислот (глицин, саркозин, ОЬ-аланин, р-аланин, ОЬ-а-аминомасляная кислота и а-аминоизомасляная кислота), а также других соединений (молочная, муравьиная и уксусная кислоты) в системе, содержащей метан, аммиак, водород и воду. Эту смесь, близкую к предполагаемому составу земной атмосферы на ранних стадиях ее образования, подвергали в течение недели и дольше воздействию электрических разрядов. Было найдено, что аминокислоты образуются путем гидролиза нитрилов последние в свою очередь возникают в результате реакции между альдегидами и синильной кислотой, образующимися под действием электрических разрядов. Миллер высказал любопытное предположение о возможном синтезе первых живых организмов из аминокислот и других соединений, образовавшихся в результате взаимодействия между альдегидами, синильной кислотой и аммиаком в первичном океане. [c.307]

    В связи с этими особенностями цели газовой промышленности существенно расширились. Из пластового флюида месторождений со сложным составом можно получить топливный газ высокого давления (метан) этан — сырье для органического синтеза, производства пластических масс, поверхностно-активных веществ, синтетических материалов и т. д.  [c.8]


    Способы получения. Основными источниками метана являются природные горючие газы и каменный уголь. Синтетический метан можно получить из углерода и водорода. Эта реакция является примером синтеза органических веществ непосредственно из элементов. [c.19]

    Оказалось, что эти бактерии не нуждаются в органических веществах кан и зеленые растения, они способны синтезировать органические соединения из СО2 и Н2О, но в отличие от растений не за счет энергии солнечных лучей, а за счет энергии, выделяющейся при окислении аммиака и нитрит-иона. Этот процесс получил наименование хемосинтеза. Позднее были открыты и другие бактерии, способные к хемосинтезу, окисляющие свободным кислородом серу и сероводород, двухвалентное железо, марганец, трехвалентную сурьму, водород, метан, уголь. Во всех этих случаях реакция окисления дает бактериям энергию, необходимую для синтеза органических веществ из СОа и Н2О. [c.69]

    При стандартных условиях СН4 - бесцветный газ без запаха и вкуса. Метан в больших количествах содержится в природе в пустотах земной коры, в виде раствора в нефти, выделяется как продукт разложения органических веществ анаэробными бактериями в отсутствие кислорода (болотный газ). Несмотря на малое содержание в атмосфере (7 10 % объемн.), метан относится к газам, регулирующим ее парниковый эффект . Метан добывают десятками миллионов кубометров как сырье для органического синтеза и как топливо. [c.305]

    Со второй половины прошлого столетия серьезное значение в качестве сырья приобрел каменный уголь. Получаемая в виде побочного продукта коксования каменноугольная смола открыла путь для промышленного получения бензола, толуола, нафталина и других ароматических углеводородов. Эти вещества в свою очередь стали сырьем для синтеза красителей, лекарственных препаратов, взрывчатых веществ. В нашем столетии все большее значение в качестве сырья стала приобретать нефть, главной составной частью которой являются парафиновые и нафтеновые углеводороды. Важным сырьем стал и природный газ, главная составная часть которого — простейший парафиновый углеводород — метан СН4. Органические вещества выделяют также из сланцев. Сохранила свое значение и древесина, запасы которой, в отличие от ископаемого сырья, постоянно возобновляются. [c.13]

    Сырьем для их получения служат водород, окись углерода, метан и его гомологи, этилен, пропилен, н-бутилен, изобутилен, ацетилен, бензол, толуол, нафталин и др., получаемые при переработке жидкого, твердого и газообразного топлив. В производстве синтетических органических продуктов используются процессы окисления и восстановления, гидрирования и дегидрирования, гидратации и дегидратации, сульфирования, нитрования, галоидирования и др. На их основе осуществляется синтез самых различных соединений, служащих сырьем для получения полимеров, синтетических красителей, ядохимикатов, смазочных, моющих, душистых и лекарственных веществ и т. д. Большинство органических процессов протекает в присутствии катализаторов. [c.320]

    Метан может образовываться при биохимическом разложении (метановом брожении) органических веществ при участии бактерий (например, болотный метан), при химическом — термокаталитическом — преобразовании тех же веществ в осадочной толще, наконец, при глубинном неорганическом синтезе (например, при воздействии водорода на свободный углерод и его окислы). Подавляющая часть метана газовых и газо-нефтяных залежей образуется путем термокаталитического преобразования веществ в осадочной толще. Частично непосредственным источником метана служат нефтяные углеводороды и другие компоненты нефтей. [c.216]

    Гомологи метана распространены в природе значительно меньше, чем метан. Биохимическое образование их в сколько-нибудь существенных размерах, по-видимому, не происходит в зоне диагенеза п раннего катагенеза отложений они практически не встречены. Б сущности, область распространения гомологов метана в природе совпадает с таковой для нефтей (см. гл. X). Эти газы можно рассматривать и как газовую фракцию нефтей, иногда встречающуюся в обособленном от остальных фракций состоянии. Отсутствие биохимического образования гомологов метана приводит к заключению, что они представляют собой продукты исключительно термокаталитических превращений органических веществ в стратисфере. Возможность их неорганического синтеза безусловно крайне ограничена (даже в большей степени, чем метана). Очевидно, гомологи метана в газо-нефтяных и отчасти в газовых залежах в значительной мере возникли за счет превращений жидких нефтяных углеводородов, а также за счет дисперсных органических компонентов осадочных пород. [c.216]

    ГАЗ КОКСОВЫЙ — горючий газ, образуется в процессе коксования каменного угля (нагревании без доступа воздуха до 900—1100° С). Г. к. содержит водород, метан, оксид углерода, углеводороды и другие горючие комю-ненты. Г. к. используется для отопления коксовых и мартеновских печей, ка керамических и Других заводах, в качестве химического сырья для получения водорода и синтеза органических веществ. [c.62]


    КОНВЕРСИЯ ГАЗОВ (лат. сопуег-510 — превращение) — процесс переработки газов с целью изменения состава исходной газовой смеси. Конвертируют метан и его производные или оксид углерода для получения водорода или его смесей с оксидом углерода — так называемый синтез-газ, который используют для синтеза органических веществ, в качестве газа-восстановителя в металлургии или для получения чистого водорода. [c.133]

    Исходные вещества — простые углеводороды метан, этилен, пропилен, бутилен, ацетилен, бензол, толуол и др., являющиеся основным сырьем органического синтеза, получаются при химической переработке газообразных, жидких и твердых видов топлива. В настоящее время многие из перечисленных исходных веществ выпускаются десятками и сотнями тысяч тонн. [c.160]

    Тем не менее в нижних зонах земной коры, в ее магматических породах, там где температурные условия благоприятны, возможно образование некоторых количеств углеводородов в результате реакций синтеза из водорода, окиси углерода, углекислого газа, воды ж углерода. Концентрации этих углеводородов невелики. Они представлены главным образом метаном, так как жидкие углеводороды при высокой температуре (выше 200 — 250° С) не могут сохраняться. Образуются при этом некоторые битуминозные вещества. Следует, однако, иметь в виду, что жизнь на Земле возникла 2 — 3 млрд. лет назад и органические остатки и образовавшиеся из них углеводороды могут находиться в рассеянном состоянии в очень древних метаморфических породах. [c.80]

    Исходные вещества — простые углеводороды метан, этилен, пропилен, ацетилен, бензол, толуол и другие, являющиеся основным сырьем органического синтеза, получаются при переработке различных видов топлива. Многие из этих углеводородов выпускаются промышленностью десятками и сотнями тысяч тонн.  [c.482]

    МЕТАН СН4 — первый член гомологического ряда предельных углеводородов, Бесцветный газ, не имеющий запаха, малорастворим в воде. М. образуется в природе при разложении органических веществ без доступа воздуха на дне болот, в каменноугольных залежах (отсюда другое название М.— болотный, нли рудничный газ). В большом количестве М, образуется при коксовании каменного угля, гидрировании угля, нефти. В лаборатории М. получают действием воды на карбид алюминия. Л, — главная составная часть природных горючих газов. М. легче воздуха, смеси М. с воздухом взрывоопасны, М. горит бледным синим пламенем. М, широко используется в промышленности и быту как топливо, для получения водяного и синтез-газа, применяемых для органического синтеза углеводородов с большой молекулярной массой, спиртов, ацетилена, сажи, хлористого метила, хлорбро . метана, ни-грометака, цианистоводородной кислоты и др. [c.160]

    Ранее мы рассмотрели производство рада продуктов (этилбензола, стирола), получаемых последовательно алкилированием и дегидрированием на базе бензола и олефинов (в частности, этилена и пропилена). Вместе с тем для получения этих и других ценных продуктов основного органического синтеза (крезол, бензол) могут быть использованы доступные исходные вещества (толуол, метан и кислород), подвергающиеся окислительному метилированию. [c.525]

    Исходные вещества — простые углеводороды метан, этилен, пропилен, бутилен, ацетилен, бензол, толуол и другие, являющиеся основным сырьем органического синтеза, получаются при химической переработке газообразных, жидких и твердых видов топлива. Раньше основным источником сырья органического синтеза была смола коксования и полукоксования. Широко использовалось сырье растительного и животного происхождения. В последние годы преобладающее значение приобрели жидкие углеводороды нефти, природный и попутный газы, а также газы нефтепереработки. В настоящее время многие из перечисленных исходных веществ выпускаются десятками и сотнями тысяч тонн. [c.494]

    Продукты эти большей частью вырабатываются в значительных количествах (отсюда и название — тяжелый органический синтез), и для их получения используются чаще всего непрерывные процессы с применением катализаторов нередко реакции протекают при высокой температуре, а иногда и при высоком давлении. В качестве сырья в основном органическом синтезе используют простые по строению веп .ества, преимущественно газы. Это углеводороды жирного ряда парафины (метан и его гомологи), олефины (этилен, пропилен, бутилены) и ацетилен, а также окислы углерода (окись и двуокись), водород, водяной пар. В меньших количествах применяются также ароматические углеводороды и их производные. Все эти вещества получают переработкой нефти, ископаемых углей, природного газа они содержатся в природном и попутном нефтяном га.зе (парафины), газах нефтепереработки (парафины и олефины) и в коксовом газе (этилен, пропилен, метан, водород). Двуокись углерода обычно выделяют из различных газов — отходов других производств. [c.254]

    Первые синтезы органических веществ удалось провести немецкому химику Ф. Вёлеру. В 1824 г. он наблюдал образование щавелевой кислоты из дициана, а в 1828 г.— образование мочевины из цианата аммония. Были разработаны методы для элементного анализа органических соединений Ж- Дюма разработал метод количественного определения азота, а Ю. Либих — метод определения углерода и водорода в органических соединениях. В середине XIX в. быстро расцвел органический синтез. В 1845 г. Г. Кольбе синтезировал уксусную кислоту, в 50-е годы М. Бертло из простых неорганических веществ синтезировал муравьиную кислоту, этиловый спирт, ацетилен, бензол, метан, а из глицерина и жирных кислот получил жиры. [c.10]

    Кроме газов нефтепереработки, в распоряжении химиков имеются громадные, практически неисчерпаемые запасы природных газов. Основная составная часть их — метан, называемый также болотным или рудничным газом. Метан химически неактивен и поэтому применение его для органического синтеза — одна из труднейших задач. Однако и эта задача в большей мере уже разрешена. Метан может быть превращен в реакционноспособные вещества, например, в ацетилен, формальдегид и др. Ацетилен — узловое вещество в промышленности органического синтеза. Его можно сравнить с большой узловой станцией, от которой идут пути к пластическим массам и синтетическим волокнам, каучукам и взрывчатым веществам, красителям и лекарственным препаратам. [c.127]

    Ряд других удачных синтезов органических веществ Дал1.ше rpo П л виталистические воззрения. Вертело удалось получить сингегпческим путем глицериды и жиры (в 1853 г.), а три года спустя (в 1856 г.) метан из сероуглерода и сероводорода. А. М. Бутлеров (в то время профессор Казанского угшверситета), действуя на полимер муравьиного альдегида известковой водой, получил смесь различных сахаров (в 1861 г.). [c.6]

    Активно микробиологический синтез метана происходит в бедных кислородом донных отложениях, богатых органическим веществом. Источником метана являются также газогидраты (клатраты) — снегоподобные структуры, в которых метан включен в кристаллическую решетку воды. В 1м содержится до 170 м метана. Газогидраты устойчивы при низких температурах и высоких давлениях. Поэтому они встречаются в почвах вечной мерзлоты и на глубинах 500 м. [c.29]

    Нефть и все другие горючие полезные ископаемые, так же как рассеянное органическое вещество осадочных пород, генетически связаны с живым веществом нашей планеты, с биосферой прошлых геологических эпох. Проблема происхождения нефти, нижний возрастной предел ее образования тесно связаны с возрастом возникновения жизни на Земле. Согласно наиболее распространенной гипотезе. Земля возникла 4,8-5 млрд лет назад в результате слипания первичного вешества холодных тел - плане-тозималей, затем произошел ее разогрев вследствие повышенной теплогенерации. Источники энергии — радиоактивный распад, импактные воздействия, ультрафиолетовое излучение, сейсмичность, приливные возмущения и др. В результате произошла дифференциация вещества первичной Земли и сформировались ядро, мантия и земная кора, близкая по составу к современной. Дифференциация вещества вызвала выделение газов и формирование первичных океанов и атмосферы. Первичная атмосфера отличалась от современной. Она имела восстановительный характер, в ее составе были гелий и вОдород, которые быстро улетучились, метан, пары воды, аммиак, СО, СО2. Свободный кислород отсутствовал. За счет высокой активности этих веществ, очевидно, образовывались полимеры, содержащие С, К, О и другие биофильные элементы, т.е. первые органические вещества возникали путем абиогенного синтеза. [c.104]

    Кизельгур, применяемый как носитель катализатора в синтезах на основе СО, должен содержать менее 1% Fe (в противном случае образуется метан) менее 0,4о Al Og (иначе происходит значительное гелеобразование) и менее 1% органических веществ, которые могут быть разрушены прокаливанием при 600—700°. Для получения катализатора растворы o(N03)2, образовавшиеся при растворении металлического кобальта или отработанного катализатора, а также Th(N03)4 и Mg(N03)2, осаждаются в горячем состоянии содой. Затем добавляо кизельгур, фильтруют и промывает на фильтрпрессе или барабанном фильтре, продавливают образовавшуюся массу на специальном прессе, получая маленькие ко тбаски , и сушат их в полочной сушилке с вращающимися лапами. Далее рассевают массу для выделения грубозернистого, так называемого зеленого зерна. При 390—410° производится восстановление катализатора циркулирующим водородом высокой чистоты (не содержащим HjS и СО). При восстановлении выделяется большое количество воды, которую необходимо выводить из процесса. Для этого используют очень экономичный способ, широко применяемый для тонкой очистки газов. Сначала вымораживанием в холодильнике Линде прп —12° выделяют большую часть воды (содержание ее снижается с 20 до 3,5 г м ), затем газ досушивают силикагелем, доводя содержание воды в нем до 0,1 г/л . [c.154]

    Ряд интересных вопросов привел нас к исследованию пентана в адсорбированном состоянии. Первым из них является рассмотрение возможности образования углеводородов нефти в результате облучения некоторых органических веществ. Ранние наблюдения Линда и Бардуэлла [4] показали, что при облучении органических соединений образуются углеводороды, подобные по своему составу имеющимся в нефти. Вычисления Белла, Гудмэна и Уайтхеда [5] и дальнейшие опыты [6, 7] показывают, что жидкие и газообразные углеводороды могут образоваться путем облз чения сложных органических веществ в нефтеносных осадках. Во всех этих исследованиях полученное отношение водорода к метану, образующемуся при облучении органическмх соединений в объеме, очень велико, в то время как газы нефти содержат фактически много метана и мало водорода. В связи с этим мы пытаемся выяснить влияние диспергирования на минеральных поверхностях органического соединения на отношение количеств водорода и метана. Другим доводом в пользу постановки этого исследования было предположение о том, что если распределение органического соединения на минеральном порошке вносило бы существенные изменения в продукты радиолиза, то это исследование могло бы открыть новые пути к практическому химическому синтезу. Более отдаленным соображением было желание пролить свет на основные процессы, заключающиеся в переносе энергии от твердой поверхности к жидкости. [c.135]

    Наиболее употребительные органические соединения сохраняют исторически сложившиеся тривиальные названия, указывающие ибо на происхождение данного вещества (молочная кислота, масляная кислота, мочевина и т. д.), либо на его свойства (эфир, антифебрин, скатол и т. д.). С развитием органического синтеза количество органических соединений стало возрастать с такой быстротой, что, пользуясь прежней системой обозначения, оказалось чрезвычайно трудным придумывать тысячи различных новых названий. Решение было найдено в заместительной, или так называемой рациональной, номенклатуре (PH). Эта номенклатура рассматривает химические соединения к к производные более простых и хорошо известных соединений — прототипов, в которых один или несколько атомов водорода замещены радикалами (остатками углеводородов), другими элементами или функциональными группами (—ОН, —NH2, —ТМОг и т. д.). В качестве прототипов используются, например, метан, этилен, ацетилен, метиловый спирт, уксусная кислота и другие простейшие соединения. Рациональная номенклатура, очень удобная для обозначения сравнительно простых соединений, теряет свои преимущества при переходе к более сложным соединениям. В связи с этим возникла потребность в создании новой, универсальной международной номенклатуры (МН). [c.36]

    Ацетилен является в настоящее время одним из важнейших сырьевых веществ в промышленности органического синтеза. Наиболее выгодно получать ацетилен из углеводородных газов (электрокрекинг метана и другие способы). При производстве ацетилена путем переработки углеводородных газов его концентрация в получающихся газообразных продуктах (водород, углеводороды и др.) относительно невелика. В то же время ацетилен в отличие от предельных углеводородов хорошо растворяется в воде. Он растворяется в воде примерно в 30 раз лучше, чем метан. Ацетилен очень хорошо растворяется также в диметилформамиде, ацетоне, метаноле, бутирол-актоне и других растворителях. Эти свойства ацетилена и используются сейчас для его выделения из газовых смесей. [c.62]

    Мы описали бактерий, окисляющих метан, вместе с остальными хемоавтотрофными видами потому, что использование ими метана похоже на использование сероводорода, серы, тиосульфатов или аммиака истинными автотрофными бактериями. Многие другие предположительно гетеротрофные бактерии могут жить на одном химически чистом органическом субстрате. Вполне возможно, что они также используют органический субстрат исключительно или главным образом как источник водорода и энергии, но свое клеточное вещество строят за стет восстановления двуокиси углерода. Однако обмен веществ большинства этих бактерий еще не полностью изучен, и поэтому мы не можем утверждать, что они не используют по меньшей мере части органического субстрата на прямую гетеротрофную ассимиляцию. Так, на примере пурпурных бактерий АМогко аееае) известно, что синтез углеводов посредством восстановления двуокиси углерода часто может сочетаться с гетеротрофной ассимиляцией части восстановителя. [c.126]


Смотреть страницы где упоминается термин Синтезы органических веществ метана: [c.82]    [c.27]    [c.186]    [c.154]    [c.81]    [c.4]    [c.45]    [c.10]    [c.4]   
Катализ в неорганической и органической химии книга вторая (1949) -- [ c.46 , c.57 ]




ПОИСК







© 2024 chem21.info Реклама на сайте