Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Ассоциация и сила кислот

    Увеличение силы кислоты в ряду от фтористого водорода к иодистому водороду объясняется уменьшением ассоциации ионов с увеличением радиуса анионов. [c.283]

    Таким образом, характер влияния основных растворителей один и тот же. Все они, наряду с нивелирующим действием на силу кислот, которое обязано их высокой основности, проявляют и некоторое дифференцирующее действие, являющееся результатом различной ассоциации ионов, особенно в растворителях с низкой диэлектрической проницаемостью. [c.283]


    В инертных, неполярных растворителях вероятность отрыва протона очень мала, хотя в силу внутренних электронных эффектов связь Н—А может быть в высокой степени поляризована. В таких условиях кислотные свойства проявляются в самоассоциации молекул НА или в ассоциации с акцепторами протонов — основаниями, В последнем случае мерой кислотности является константа ассоциации с каким-либо основанием, выбранным в качестве стандарта. Например, константа ассоциации бензойной кислоты и дифенилгуанидина в бензоле составляет 1,82 10 . [c.234]

    Константы некоторых веществ исследовались всеми перечисленными авторами. Они, как правило, хороню совпадают. Эти данные указывают на усиливающее и нивелирующее действие аммиака на силу кислот. Величина рК большинства кислот изменяется в пределах двух единиц — от 2,5 до 4,4. Сила синильной кислоты (р.й в воде 9,33) и сероводорода (рАГ в воде 7,24) уравнивается с силой сильных минеральных кислот. Несмотря на большую основность аммиака, происходит общее ослабление силы кислот рАГ даже самых сильных кислот больше двух. Это ослабление объясняется сравнительно малой диэлектрической проницаемостью аммиака (21), благодаря чему возникает заметная ассоциация ионов. Различие в степени ассоциации обусловливает некоторое различие в силе сильных кислот. [c.282]

    Влияние ассоциации ионов на силу кислот [c.342]

    В данном растворителе все кислоты имеют одинаковый катион — ион лиония различие в ассоциации ионов кислот зависит от различия в свойствах и прежде всего в радиусах их анионов. В средах с низкой диэлектрической проницаемостью это приводит к дифференциации силы кислот, особенно в растворителях с малой способностью к сольватации. [c.342]

    Можно было бы думать, что растворитель без протонов будет идеально подходить как среда для изучения относительной силы кислот и оснований, поскольку сам растворитель совершенно инертен и не может нп принимать, ни отдавать протоны. Такого рода измерения были сделаны, но в толковании их результатов много неясного. Пре кде всего, использование таких растворителей затруднено вследствие их малой диэлектрической проницаемости, которая обычно имеет величину 2 или 3. Поэтому заряженные частицы в таком растворе образуют двойные ионы и происходит сильная ассоциация. При таких условиях обычные методы определения силы кислоты становятся ненадежными и константа равновесия уже ие имеет такого простого вида, как в растворителе с большой диэлектрической проницаемостью. Об относительной силе кислот и оснований в растворителях с малой диэлектрической проницаемостью имеется очень мало данных. [c.339]


    Форма кривых потенциометрического титрования в неводных средах зависит от используемого электрода, растворителя, фонового электролита и силы кислот или оснований. На форму кривых влияют также присутствие ионов металлов, ассоциация между растворенным веществом и растворителем, образование комплексов кислота - анион кислоты и другие факторы. [c.247]

    При растворении галогеноводородов в воде происходит их диссоциация на ионы, и образуются растворы соответствующих галогеноводородных кислот. Причем при растворении HI, НВг и НС1 диссоциируют почти полностью, поэтому образующиеся кислоты относятся к числу сильных. В отличие от них, фтороводородная (плавиковая) кислота является слабой. Это объясняется ассоциацией молекул HF вследствие возникновения между ними водородных связей. Таким образом, сила кислот уменьшается от HI к HF. [c.182]

    Хотя кислоты и не реагируют с апротонными растворителями по протонно-донорно-акцепторному механизму, однако в среде апротонных растворителей сильно развиты процессы ассоциации между молекулами и ионами вследствие низких значений их диэлектрических проницаемостей. Процессы ассоциации усложняют соотношения в силе кислот. [c.31]

    Можно было бы ожидать, что в апротонных растворителях соотношения в силе кислот наиболее просты, так как кислоты не вступают во взаимодействие с растворителями. Однако в этих растворителях в связи с их низкой диэлектрической проницаемостью, сильно развиты процессы ассоциации между молекулами и между ионами, которые весьма осложняют ожидаемые простые соотношения. [c.329]

    Растворитель с высокой основностью и высокой диэлектрической проницаемостью (например, гидразин) превращает любые, даже слабые, кислоты в истинные электролиты. Превращение кислот в истинные электролиты имеет место и в основных растворителях с низкой диэлектрической проницаемостью (например, в пиридине). Об этом свидетельствует образование солей этими основаниями (например, аммиаком, пиридином, анилином) и кислотами и их полная ионизация в средах с высокой диэлектрической проницаемостью (например, в воде). Однако в средах с низкой диэлектрической проницаемостью, в отличие от сред с высокой диэлектрической проницаемостью. Касс не равна нулю. Это вызывает ослабление силы кислот. Сила кислот в этих растворителях будет определяться в значительной степени ассоциацией ионов. [c.387]

    По мнению Дэвис, мерой силы кислот при их реакциях в бензольных растворах являются константы ассоциации при образовании молекулярных соединений с основанием. Эти константы обычно изменяются параллельно константам ионизации тех же кислот в водном растворе. [c.256]

    Первый член в правой части имеется и в отсутствие ассоциации ионов. Как и в случае функций кислотности в водных растворах, он отражает независимость функции кислотности HQ(B)W от природы основания при условии, что В1 и В2 (а также В1Н+ и В2Н+) характеризуются одинаковыми свободными энергиями переноса из растворителя S в воду, или, если различия между ними компенсируются отношением, которое входит в состав (1.170). Отношение констант Кех является мерой относительной стабильности ионных пар ВН+ А , которые обычно образуют водородные связи и на которые влияют разнообразные ближние взаимодействия (см. гл. 3, разд. З.Б), в том числе сила кислоты ВН+ Второе следствие состоит в том, что предельные значения HQ(B)W в разбавленных растворах различных кислот НА не совпадают, если измерения производят с одним и тем же индикатором. Так, применяя (1.168) к разбавленным эквимолярным растворам кислот НА1 и МА2, получим [c.133]

    Сила кислоты (основания), обусловленная способностью этих соединений ионизироваться с образованием промежуточных соединений — ионных пар, которые могут в известной мере диссоциировать на свободные или сольватированные ионы в среде данного растворителя. В этом случае сила кислоты (основания) тоже зависит от растворителя, но не так, как в случае 2. Ионные лары существуют при определенных условиях, в частности, этому способствуют низкие значения е растворителей. При значительной тепловой флуктуаций противоположно заряженные частицы, составляющие ионные пары, диссоциируют, чему весьма способствует сольватация ионов. Плохая сольватация или полное отсутствие сольватации благоприятствуют ассоциации ионов. Возможность образования ассоциатов зависит от соотношения между кулонов-скими силами и энергией теплового движения. [c.32]

    Неводные растворители могут оказывать существенное влияние на скорость и механизм реакций, что объясняется многими причинами (влиянием е среды, вязкостью, избирательной и специфической сольватацией, образованием водородных связей) на кинетику изотопного обмена, протекающего в их среде изомерию органических соединений растворимость неорганических и органических соединений полярографическое поведение вещества диссоциацию, ассоциацию и комплексообразование коэффициенты активности электродные потенциалы окислительно-восстановительные потенциалы силу кислот и оснований хроматографическое разделение и др. [c.208]


    Измайлов предложил единую схему диссоциации электролитов, учитывающую все основные процессы, которые протекают в растворах. На основании этой схемы и учета энергии взаимодействия ионов и молекул электролитов с растворителем выведены общие уравнения, характеризующие зависимость силы кислот и оснований от физических и химических свойств растворителей. Дифференцирующее действие растворителей связано с различием в энергии сольватации ионов и молекул, а также с различной ассоциацией ионов. [c.210]

    В связи со способностью к протоннрованию приобретают особое значение данные о силе кислот и оснований. Удобно характеризовать силу кислоты и основания отрицательными логарифмами констант диссоциации и ассоциации рКк = lgЛ к и рКо = — Ко, где  [c.90]

    Минеральные и карбоновые кислоты, как и кислрты Льюиса, присоединяются к олефинам, и по их способности к протонированию можно судить о силе кислот или оснований, которые характеризуются отрицательными логарифмами констант диссоциации и ассоциации рКк = Кк и рКо = —15Ко, где Кк= [Н+][А-] ВН+ о --[НА] [Н+] — кислота Б — основание. [c.65]

    Однако влияние этих равновесий на силу кислот сказывается только в концентрированных растворах. В разбавленных растворах, в которых определяются термодинамические константы, реакция (IV) обычно проходит до конца, а реакция (V) практически еще не начинается. Напрймер, в очень концентрированных водных растворах молекулы азотной кислоты ассоциированы, при добавлении воды ассоциаты уступают место продуктам взаимодействия азотной кислоты с водой состава HN0з H20 и НКОз-ЗНзО одновременно изменяется степень ассоциации воды. При дальнейшем разбавлении эти продукты диссоциируют па сольватированные ионы. Если при этом диэлектрическая проницаемость раствора невелика (смеси диоксана с водой), то образуются ионные молекулы — ионные двойники. Наличие таких ионных двойников наряду с молекулами обнаруживается на основании различия между константами диссоциации, определенными из электрохимических и оптических данных. Ионные молекулы, как и обычные, не переносят тока, но их оптические свойства близки к свойствам свободных ионов. [c.295]

    Как отмечалось ранее, при растворении галогеноводородов в воде происходит их диссоциация на иоНы и образуются водные растворы соответствующих галогеноводородных кислот. Причем при растворении Н1, НВг и НС1 диссоциируют почти полностью, поэтому образующиеся кислоты относятся к числу сильных (сравните степени диссоциации этих кислот, приведенные в табл 9), В отличие от других галогеноводородов фтористый водород диссоциирует в воде слабо, в связи с этим образующаяся фтористоводородная кислота является слабой, эта кислота лишь немного сильнее уксусной. Такое аномальное поведение фтористого водорода объясняется ассоциацией молекул фтористого водорода вследствие возникно-вення между ними водородных связей (см. 7, гл. III), Т. е. тем, что при диссоциации НР на ионы требуется дополнительная затрата энергии на разрыв водородных связей. Таким образом, сила кислот сильно уменьшается от Н1 к НР, если йодистоводородная кислота Н1 явля-.ется одной из самых сильных неорганических кислот, то [c.273]

    Тщательное исследование Кольтгофа и Брукенщтейна [39—42] показало, что кислотно-основные свойства в ледяной уксусной кислоте могут быть поняты только с помощью представлений об ионизации растворенного вещества и ассоциации образующихся ионов в ионные пары, а также в триплеты и квадруплеты. Константа ионизации кислоты или основания в уксусной кислоте (с учетом образования ионных пар) позволяет получить значительно более полезные выражения для силы кислоты или основания, чем это дает простая константа диссоциации . Диэлектрическая проницаемость ледяной уксусной кислоты мала (6,13 при 25° С) даже сильные электролиты имеют константы диссоциации меньше 10 [41, 43—45]. Для наиболее сильной (хлорной) кислоты в ледяной уксусной кислоте Брукенштейн и Кольтгоф нашли р/С равными 4,87 в то время как для соляной кислоты рК равно 8,55. Поэтому в таких растворах имеется немного ионов эффектом ионной силы (солевой эффект) можно пренебречь. Сложность равновесий в ледяной уксусной кислоте подтверждается тем, что индикаторные основания колориметрически отзываются на ассоциированную форму (ионные пары) кислоты, а не на активность протона. Кажущаяся сила кислоты зависит от выбранного индикаторного основания, и эта величина может отличаться от значения, найденного потенциомет-рически. [c.198]

    Приведенлые выше данные о влиянии растворителей на силу кислот и о их дифференцирующем действии, рассмотренные в седьмой г.лаве данные о взаимодействии недисс.оции-ровапных молекул кислот и оснований с растворителями, рассмотренные в шестой главе и сведения об ассоциации ионов, рассмотренные в четвертой главе, указывают на недостаточность схемы кислотно-основного взаимодействия Бренстеда. Теория Бренстеда — Лоури—Бьеррума, которая допускает только один тип химического взаимодействия кислот с основаниями (ТОЛЬКО обмен протонов), не позволяет объяснить всех особенностей во влиянии растворителей на силу кислот [c.568]

    Весьма вероятно, что равновесие первой реакции, подобно диссоциации НХ в воде, сильно смещено вправо. Однако электропроводность раствора обусловлена второй реакцией, поэтому и трактовка силы кислоты должна основываться на второй реакции. Те же аргументы применимы для растворов в безводной уксусной кислоте, диэлектрическая проницаемость которой равна 6,13. Если такой подход верен, то возникает вопрос, является ли устойчивость ионной пары мерой кислотности. В водной среде (еяа80) ассоциация ионов пренебрежимо мала и играет роль лишь перенос протона. Следовательно, когда мы говорим о кислотности в воде и в растворителе с малой е, речь, по-видимому, идет о совершенно различных вещах, по крайней мере для основных растворителей. По-видимому, трактовка силы кислоты зависит от того, будет ли относительное сродство аниона кислоты к протону того же порядка, что и электростатическое притяжение аниона к сольватированному протону. [c.529]

    Очевидно, это уравнение будет изображать с равным успехом взаимодействие кислоты с основанием в апротическом растворителе и самоионизацию амфипротического растворителя. В какой степени эта реакция может протекать при данной температуре, если Вз изображает растворитель, зависит не только от внутренней силы кислоты (т. е. ее внутренней протонодонорной тенденции, независимой от среды), но и от того, насколько сильным основанием является растворитель, а также от всех остальных свойств последнего, в частности от диэлектрической постоянной. Глубина реакции будет также зависеть и от типа зарядности участвующих в реакции кислот и оснований, так как диэлектрическая постоянная среды будет оказывать неодинаковое влияние на работу переноса протонов (и, таким образом, на ДF и на равновесное превращение) в случае кислот, различающихся по типу зарядности. Равновесное превращение по уравнению 1 будет также зависеть и от степени ассоциации кислоты (или основания) и, наконец, от концентрации всех присутствующих разновидностей молекул и ионов потому, что эти разновидности могут непосредственно участвовать в равновесии 1, а, кроме того, коэффициенты активности этих разновидностей, участвующих в равновесии, будут зависеть от концентраций всех составных частей раствора. [c.356]

    Надо с самого начала иметь в виду, что уравнение 41 в сочетании с приведенными выше соображениями касательно связи между летучестью и силами ассоциации требует, чтобы между этими силами и уменьшением свободной энергии, сопровождающим процесс растворения, имелся известный параллелизм. Уравнение не налагает такого же условия и на теплоты растворения, однако наш опыт в отношении энергий связи заставляет ожидать параллелизма и здесь. Далее, в связи с вопросом о том, может ли теория дать нам возможность предвидеть, каковы будут тенденции у сил ассоциа-дии, мы, естественно, ожидаем, что проявление донорных и акцепторных свойств окажется самым главным фактором, тогда как ассоциация диполей займет лишь второе место. Если в качестве растворяемого вещества взять кислоту, то тогда, согласно определениям, данным нами силе кислот и основности растворителей в соответствии с уравнением 13, летучесть растворе1шого вещества, а следовательно, его свободная энергия, должна уменьшаться по мере увеллчения силы кислоты и (или) основности растворителя. Если растворяемое вещество не является кислотой, но тем не менее является акцептором, то мы можем думать, что и здесь сохранит свою силу та же самая зависимость, т. е. мы можем ожидать, что относительные донорные свойства растворителей не будут зависеть от того, какой мы взяли акцептор. Льюис [3] высказал сомнение в возможности существования такой простой монотонной зависимости для донорных (или акцепторных) свойств. Однако работы Коха [84] показывают, что одна и та же зависимость основности растворителей может служить для объяснения наблюдаемых изменений активности как в случае иона серебра, так и в случае иона водорода. Часть полученных им результатов воспроизводится в табл. 13, в которой растворители расположены в порядке уменьшающихся основностей, определенных по отношению к водородным ионам, а коэффициент активности сольватации соответствует переходу ионов серебра из вакуума в раствор. Его ход параллелен ходу АР сольватации. Отсутствие какой-либо зависимости между значениями диэлектрической постоянной и служит подтве рждением того, что в тех случаях, когда проявляются донорные и акцепторные свойства, диэлектрическая постоянная играет определенно второстепенную роль. [c.395]

    Если концентрация кислотных форм в органической фазе известна, то график зависимости IgD от IgQ дает сведения об относительной силе кислот в этом растворителе. Тип повеления, иллюстрацией которого служит кривая d на рис. 1, должен быть ожидаемым случаем для кислородсодержащих, не подобных воде (не спиртовых) органических растворителей с умеренной диэлектрической проницаемостью. Если диэлектрическая проницаемость небольшая, ассоциация (объединение ионов в пары) возрастает до тех пор, пока в органической фазе практически существует только НМХг и нет никаких изменений D (правый горизонтальный отрезок на кривой d, рис. 1). Если диэлектрическая проницаемость органического растворителя высока и приближается к диэлектрической проницаемости воды, ассоциация в органической фазе проходит в небольшой степени, а галогеноводородная кислота НХ, присутствующая в водной фазе в гораздо большей концентрации, чем металл, вероятно, довольно хорошо растворима и сильно диссоциирована в органической фазе и таким образом поставляет основную часть водородного иона органической фазы равным образом для всех практически достижимых концентраций металла . Таким образом, D опять становится постоянной величиной (левый горизонтальный отрезок на кривой d, рис. 1). [c.265]


Смотреть страницы где упоминается термин Ассоциация и сила кислот: [c.123]    [c.646]    [c.35]    [c.402]    [c.290]    [c.189]   
Электрохимия растворов (1959) -- [ c.646 , c.650 ]




ПОИСК





Смотрите так же термины и статьи:

Ассоциация

Ассоциация влияние на силу кислот

Ассоциация кислот

Кислоты сила



© 2025 chem21.info Реклама на сайте