Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Электролиты электростатическая теория

    Электростатическая теория устойчивости дисперсных систем приложима к тем системам, устойчивость которых обеспечивается только электростатическим фактором. В реальных же дисперсных системах наблюдается в лучшем случае преобладание того или иного фактора устойчивости. Однако электростатический фактор устойчивости характерен для наиболее распространенных систем с водными средами, создающими условия для диссоциации. Механизм образования электростатического барьера связан с механизмом образования двойного электрического слоя поверхностная диссоциация вещества частиц, адсорбция электролитов, в том числе ионогенных ПАВ и ВМС, и ориентирование диполей молекул растворителя илн растворенных веществ. Так как электростатический барьер определяется, главным образом, электрическим потенциалом и толщиной двойного электрического слоя (VI. 103), то, очевидно, он будет возрастать с увеличением поверхностной диссоциации, количества адсорбируемых потенциалопределяющих ионов и прочности их закрепления, а также с уменьшением взаимодействия противоионов с поверхностью (увеличение толщины двойного слоя). При наличии на поверхности функциональных групп, обладающих слабыми кислотно-основными свойствами, значение потенциала и соответственно потенциального барьера зависит от pH среды. Электролит-стабилизатор должен иметь одии иои с достаточным сродством к веществу частицы (заряжение поверхности), другой—к растворителю (для обеспечения диссоциации электролита-стабилизатора и достаточной толщины двойного слоя). [c.332]


    Влияние высокой напряженности поля было обнаружено до разработки электростатической теории сильных электролитов. Теория объяснила факт, установленный экспериментально. Опыты по определению электропроводности при напряженности поля порядка 2 10 в см требуют соблюдения ряда предосторожностей. Огромные токи, протекающие в электролите, должны вызывать повыщение температуры, что недопустимо. [c.132]

    Учитывая выводы электростатической теории сильных электролитов и результаты проверки ее, можно несколько уточнить классическое определение степени диссоциации. В растворе могут существовать свободные ионы, ионы, связанные друг с другом в пары, и недиссоциированные молекулы с ковалентной связью. Появление ионных пар более вероятно в крепких растворах. Можно себе представить раствор, в котором нет молекул с ковалентной связью, но в котором существуют пары ионов, прочно удерживаемых в непосредственной близости друг к другу. Такие пары могут образовываться и разрушаться, т. е. они находятся в равновесии со свободными ионами. Про подобный электролит можно сказать, что он полностью ионизирован, но не полностью диссоциирован. Если, наряду с ионными парами, существуют в растворе и недиссоциированные молекулы. [c.128]

    Б этой же связи следует упомянуть интересную работу А. И. Бродского и Ф. И. Трахтенберг (1937 г.), в которой показано, что хлористый литий не только в воде, но и в изоамиловом спирте ведет себя как по.тностью диссоциированный электролит, подчиняющийся соотношениям электростатической теории Дебая и Гюккеля и термодинамическому закону распределения. [c.17]

    Недостатки теории Аррениуса заставляли ученых искать новые основы теории сильных электролитов, и уже в 1894 г. Ван-Лаар указал на необходимость учитывать электростатические силы в электролите, а Сезерленд (1902), Ганч (1906) и Бьеррум (1906) выдвинули гипотезу о полной диссоциации (ионизации) сильных электролитов. В дальнейшем Бьеррум, Мильнер (1912) и Гош (1918) пытались на основе этой гипотезы создать новую теорию сильных электролитов, но безуспешно. Основы электростатической теории электролитов были заложены несколько позднее (1923) работами Дебая и Гюккеля. [c.372]

    Таким образом, распределение ионов будет определяться соотношением электростатической энергии и энергии хаотического движения ионов. Оказывается, что эти энергии сравнимы по величине, поэтому реальное распределение ионов в электролите является промежуточным между беспорядочным и упорядоченным. В этом заключается своеобразие, специфичность электролитов и трудности, возникающие при создании теории электролитов, так как прежде всего необходимо выяснить характер распределения ионов. [c.393]


    Слабые места теории Аррениуса заставляли ученых искать., новые основы теории сильных электролитов, и уже в 1894 г. Ван-Лаар указал на необходимость учитывать электростатические силы в электролите, а Сезерленд (1902), [c.395]

    Согласно оксидно-пленочной теории, критический потенциал — это. потенциал, необходимый для создания в пассивирующей пленке электростатического поля, способного стимулировать проникновение ионов С1 к поверхности металла [40]. Другие анионы также могут проникать в оксид, в зависимости от их размера и заряда. Примеси этих анионов улучшают ионную проводимость и благоприятствуют росту оксида. В конечном счете оксид или разрушается из-за конденсации мигрирующих вакансий, или его катионы растворяются в электролите на границе раздела сред в обоих случаях начинается питтинг. Предшествующий питтингообразованию индукционный период зависит от времени, которое требуется С1 для проникновения через оксидную пленку. [c.87]

    Теория Дебая —Хюккеля позволяет рассчитать коэффициент активности ионов в электролите. Коэффициент активности соответствует работе, которая была бы совершена, если 1 моль зеш,ества из некоторого воображаемого раствора без электростатического взаимодействия перенести в раствор, в котором он имеет место. [c.333]

    Двойной слой на границе раствор —металл создается электрическими зарядами, находящимися на металле, и ионами противоположного знака противоионами), ориентированными у поверхности электрода. В формировании ионной обкладки двойного слоя принимают участие как электростатические силы, под влиянием которых противоионы подходят к поверхности электрода, так и силы теплового (молекулярного) движения, в результате действия которых двойной слой приобретает размытое, диффузное строение. Кроме того, в создании двойного электрического слоя на границе металл —раствор существенную роль играет эффект специфической адсорбции поверхностно-активных ионов и молекул, которые могут содержаться в электролите. Теория двойного электрического слоя сложилась на основе работ Гельмгольца, Штерна, А. И. Фрумкина и др. [c.473]

    В теории электролитической диссоциации Аррениуса предполагалось, что ионы в растворах находятся в состоянии беспорядочного движения (подобно газообразному состоянию). Это позволило применить законы, характеризующие газообразное состояние к электролитам. Однако в предположении о беспорядочном распределении ионов в растворе не учитывалось электростатическое взаимодействие между ионами, которое проявляется на достаточно больших расстояниях. В сильных электролитах, например, действие между ионами настолько велико, что в концентрированных растворах возникает тенденция к упорядоченному распределению, аналогичному ионным кристаллам (где каждый ион окружен ионами противоположного знака). Дальнейшие исследования показали, что в реальных растворах средней концентрации распределение ионов в электролите является промежуточным между беспорядочным и полностью упорядоченным. Электростатические силы стремятся создать такое распределение, при котором каждый ион окружен исключительно ионами противоположного знака, но этому противодействует хаотическое движение ионов, приводящее к беспорядочному распределению. В конечном итоге, около каждого иона образуется ионная атмосфера, в которой преобладают ионы противоположного (по сравнению с центральным ионом) знака. [c.60]

    Недостатки теории Аррениуса заставили ученых искать новую теорию сильных электролитов. Уже в 1894 г. Ван-Лаар указал на необходимость учитывать электростатические силы в электролите. Сезерленд (1902), Ганч (1906) и Бьеррум (1906) выдвинули гипотезу о полной диссоциации сильных электролитов. В дальнейшем Бьеррум, Мильнер (1912) и Гош (1918) подтвердили эту ги- [c.61]

    Ионно-электростатическое взаимодействие в черных углеводородных пленках специально не рассматривалось. Это, очевидно, вызвано как тем, что влияние электростатического взаимодействия на устойчивость обычно невелико, так и тем, что теория ДЛФО применима при не очень сильном перекрытии диффузных слоев. В черных углеводородных пленках ситуация как раз противоположна этому. Толщина их так мала, что диффузные слои перекрываются полностью. Другими словами, в черной пленке не успевает возникнуть обкладка диффузного двойного слоя. Если электролит А В растворим как в водной, так и в органической фазе, то условием равновесия будет равенство электрохимических потенциалов в разных фазах (р )  [c.133]

    Пользуясь исходным положениями электростатической теории, можно ввести представление об ионных парах. Эти представления впервые были развиты В. К. Се-менченко (1922 г.) и независимо от него Бьеррумом (1926 г.). Такие ассоциированные ионы Семенченко называл квазимолекулами. Они, очевидно, подобно недиссоциированным молекулам, не должны участвовать в переносе электрического тока через электролит. [c.117]

    Для физиков проблема структурных сил привлекательна тем, что эти силы являются, по-видимому, наиболее яркой демонстрацией пространственной дисперсии диэлектрического отклика в водном электролите. Д. Грюен и С. Марчелья [450] впервые показали, что гидратационные силы в фосфолипидных системах могут быть представлены как результат влияния пространственной неоднородности электрических полей на взаимодействие сближающихся фосфолипидных бислоев. В работах [451, 452] непосредственно использовали аппарат нелокальной электростатики для описания природы гидратационных сил. Отметим, что были предложены и другие теории гидратационных сил [453, 454]. Однако подход, основанный на нелокальной электростатике, представляется физически более достоверным, поскольку он позволяет представить эти силы как результат электростатического взаимодействия сближающихся фосфолипидных бислоев. Это, в свою очередь, позволяет независимо исследовать влияние электролита и параметров поверхности на величину гидратационных сил. Опишем кратко развитый нами подход, следуя [438]. [c.163]


    Таким образом, классическая теория электролитической диссоциации позволила разумно объяснить закономерности, которые казались отклонениями от законов Рауля, Генри, Вант-Гоффа. Она в свое время была шагом вперед и сыграла большую роль в развитии учения о растворах. Вместе с тем теория электролитической диссоциации Аррениуса не может объяснить ряд экспериментальных фактов. Так, трудно себе представить, чтобы такой электролит, как КС1 или Na l, распадался в воде не полностью. Диэлектрическая постоянная воды много больше, чем кристалла, т. е. силы электростатического взаимодействия ионов Na+ и С1- в растворе весьма слабы, и поэтому в воде молекулы Na l не могут образовываться. [c.290]

    Теория ДЛФО объяснила все главные закономерности коагуляции гидрозолей электролит 1ми и объединила на общей количественной основе имевшиеся ранее представления (преимущественно качественные), относившиеся к различным частным случаям и нередко казавшиеся противоречивыми. В последние годы наметились также пути дальнейшего развития этой теории, связанные с представлениями о возможности протекания обратимого агрегирования частиц. Действительно, при очень малых расстояниях между частицами, помимо сил межмолекулярного притяжения, электростатического отталкивания и т. д., отражающих дальнодействие частиц, необходимо также учитывать и иные факторы, проявляющиеся при непосредственном соприкосновении частиц. Сюда относятся, например, своеобразное структурирование вблизи твердой поверхности гидратных оболочек и особенно силы упругости, обусловливающие борновское отталкивание поверхностных атомов в точке соприкосновения частиц или отталкивание адсорбированных на пове рхности частиц молекул ПАВ в области контакта. Это означает, что ближний потенциальный минимум, будучи более или менее глубоким, остается конечным. [c.316]

    Для того чтобы понять рассмотренные выше закономерностиЪо влиянию состава электролита на водородное перенапряжение, а также другие экспериментальные наблюденные факты, необходимо учесть и специфическое строение двойного слоя, на которое впервые указал Фрумкин, разработавший теорию замедленного разряда в современном ее понимании (24). Дело в том, что,, используя теорию замедленного разряда в ее первоначальном виде для вывода основных кинетических уравнений реакции разряда ионов водорода, не учитывали специфические особенности электрохимических реакций. На реакцию, протекаюш,ую на границе раздела двух фаз металл — электролит в условиях, когда на электроде имеется определенный заряд,, оказывает большое влияние электростатическое взаимодействие между этим зарядом и ионами. Прямым следствием указанного взаимодействия является изменение концентрации реагирующих частиц на поверхности металла, а следовательно, и изменение скорости самой электрохимической реакции. Силы электростатического взаимодействия между электродом и ионами, в свою очередь, зависят от плотности заряда, т. е. потенциала электрода и строения двойного слоя. [c.28]

    Исследование адсорбции ароматических аминов (анилин, о-то-луидин, 2,3- и 2,6-диметиланилин, пиридин, хинолин) в 0,1 н. НС1, выполненное Бломгреном я Бокрисом [73], также показало, что адсорбция этих соединений, которые в кислом электролите находятся в виде катионов [КНз]+, при потенциалах, соответствующих положительной ветви электрокапиллярной кривой, определяется в основном я-электронным взаимодействием. Оно облегчается при плоском расположении частиц по поверхности электрода. При потенциалах, соответствующих отрицательной ветви электрокапиллярной кривой, адсорбция определяется кулоновскими силами взаимодействия. Из этого видно, что теория электростатического взаимодействия между поверхностью ртути и адсорбируемым веществом не в состоянии объяснить все экспериментальные данные. [c.135]

    По ли электролит можно промоделировать 1) сферой с равномерно распределенным общим зарядом — подобием гомогенизированной мицеллы, проницаемой для противоионов и растворителя, 2) гибкой цепью заряженных сегментов, размеры которой находятся в равновесии, минимизирующем элекстростатическую свободную энергию, или 5) заряженным цилиндрическим стерженем [512]. В каждом случае можно получить выражение для электростатической свободной энергии и распределения противоионов (разд. 8. А и 8. В). Теория предсказывает, что 80 — 90% противоионов располагаются в достаточной близости от полииона. Область, непосредственно окружающая полиион, с хорошим приближением нейтральна. Цвиттер-ионы или со-ионы (маленькие ионы с зарядом того же знака, что и полиион) большей частью остаются вне этой области. Осложняющим описание это- [c.539]

    Числа переноса ионов электролитов высокой зарядности, установленные по теории электростатического взаимодействия, значительно отличаются от наблюдаемых. Различия могут быть следствием использования в теории сверхупрощающих предположений они могут быть обусловлены ионной ассоциацией, а также образованием в растворах многозарядных ионов комплексных ионов с ковалентными связями. Так, числа переноса галогенидов цинка при повышении концентрации электролита в результате образования во все возрастающих количествах отрицательно заряженных анионов (например, ZnP-) снижаются и даже достигают отрицательных значений. Наоборот, в растворах Zn( 104)2 число переноса не обнаруживает аномалии, и указанный электролит можно рассматривать в качестве типичного представителя электролитов типа 2 1, обладающих простыми свойствами. Однако имеются указания и на то, что изменение чисел переноса в растворах ZnS04 и Zn ( 104)2 при варьировании концентрации нельзя интерпретировать с позиций теории электростатического взаимодействия, даже если учесть образование ионных пар и гидролиз [106]. Следует предположить также образование ковалентных связей. [c.372]

    Теория Гуи оправдывается лучше всего там, где теория Гельмгольца оказывается неприложимой, и, наоборот, последняя дает лучшую сходимость с опытом в тех случаях, когда первая дает неверные результаты. Следовательно, строению двойного электрического слоя должно отвечать некоторое сочетание моделей, предложенных Гельмгольцем и Гуи. Такое предположение было сделано Штерном (1924) в его адсорбционной теории двойного электрического слоя. Штерн полагал, что определенная часть ионов удерживается вблизи поверхности раздела металл — электролит, образуя гельмгольцевскую обкладку двойного слоя с толщиной, отвечающей среднему радиусу ионов электролита . Остальные ионы, входящие в состав двойного слоя, распределяются диффузно с постепенно убывающей плотностью заряда. Для диффузной части двойного слоя Штерн, так же как и Гуи, пренебрег собственными размерами ионов. Кроме того, Штерн высказал мысль, что в плотной части двойного слоя ионы удерживаются не только за счет электростатических сил, но и за счет сил специфической адсорбции, т. е. силами некулоновского происхождения. Поэтому в растворах, содержащих поверхностно-активные ионы, их число в гельмгольцевском двойном слое может быть не эквивалентным заряду поверхности металла, а превосходить его на некоторую величину, зависящую от свойств иэпов и заряда металла. Таким образом, по Штерну, следует различать две модели двойного электрического слоя, одна из которых относится к растворам поверхностно-инактивных электролитов, [c.271]

    Далее закономерности экстракционных равновесий будут рассматриваться на примере экстракции нитратов уранила и других актинидов нейтральными фосфорорганическимн соединен ниями, поскольку соответствующие равновесия наиболее под робно изучены и могут быть полностью описаны. Эти системы являются примером равновесия электролит — неэлектролит, при котором для преодоления ион-дипольного взаимодействия в водной фазе необходима химическая связь экстрагента с извле каемым соединением, однако связь достаточно слабая, чтобы не затруднить реэкстракцию (энергия взаимодействия <10 ккал1моль). Соответственно для интерпретации экстракционной способности растворителей необходимо привлечь тео рию химической связи, а в силу слабости химических взаимо- действий при описании зависимости равновесий от условий экстракции необходимо учитывать вклад вандерваальсовых (до 3 ккал/моль) и особенно электростатических взаимодействий в химический потенциал, т. е. коэффициенты активности соединен ний в обеих фазах . Это позволяет сделать теория растворов. Описание процессов в водной фазе должно производиться на основе теории растворов электролитов, в органической — с по мощью теории многокомпонентных растворов неэлектролитов. [c.11]

    Интересно рассмотреть теперь, какие виды межатомных связей установлены химиками в результате изучения химии элементов. Все атомы, кроме атомов инертных газов, обладают способностью соединяться с атомами других элементов, хотя и не обязательно со всеми элементами. Атом водорода обычно присоединяется только к одному атому в простых молекулах и, следовательно, обладает одной валентностью. Галоиды и щелочные металлы во многих своих соединениях также одновалентны. Первоначальные работы по электролизу расплавленных солей и растворов солей указали на электрическую природу межатомных сил, а также установили возможность разделения атомов на электроположительные и электроотрицательные. Первые, например Н, N3, К и т. д., выделяются при электролизе на отрицательном электроде, а вторые — галоиды, кислород и т. д. — на положительном электроде. Поэтому Берцелиус в 1812 г. предположил, что силы между атомами в их соединениях имеют электростатический характер. Этот взгляд был оставлен к середине XIX столетия, так как он не мог объяснить многие факты из области органической химии. Так, электроположительный атом Н может быть заменен в углеводородной молекуле, например в СН4, электроот ицательным атомом С1 без существенного изменения свойств соединения, что наводит на мысль о том, что связи в таком соединении в большей степени являются неполярными связями, а не электростатическими связями между противоположно заряженными атомами. С появлением теории электроли- [c.56]

    Влияние добавленных электролитов по-разному сказывается на адсорбции полюлектролитов. Во первых, из-за экранирования заряда полиэлектролита они изменяют вклад электростатической компоненты энергии адсорбции с ростом ионной силы раствора конформация ПЭ в поверхностном слое все в большей мере будет приближаться к конформации неионного полимера. Во-вторых, добавленный электролит подавляет взаимное отталкивание сегментов полиэлектролита, что способствует образованию толстого адсорбционного слоя. В-третьих, когда сегменты связаны с поверхностью только электростатически, энергия (сила) связи макроиона с адсорбентом может быть сильно уменьшена при введении электролита в пределе может происходить даже десорбция ПЭ, т. е. ионы электролита как бы вытесняют из адсорбционного слоя полиэлектролит [60]. В-четвертых, если одноименно заряженный полиэлектролит не адсорбируется из-за того, что химическое сродство сегментов к адсорбенту недостаточно для преодоления электрических сил отталкивания, то добавление электролита может способствовать адсорбции полиэлектролита вследствие экранирования зарядов и изменения вклада электрической составляющей в энергию адсорбции сегмента х - Согласно теории полиэлектролит ведет себя при адсорбции как неионный полимер лишь в концентрированных растворах электролитов (порядка 1—5 моль/л), что во много раз больше, чем требуется [c.50]


Смотреть страницы где упоминается термин Электролиты электростатическая теория: [c.339]    [c.147]    [c.290]    [c.413]    [c.363]   
Электрохимия растворов издание второе (1966) -- [ c.30 , c.31 ]




ПОИСК





Смотрите так же термины и статьи:

Основные понятия электростатической теории сильных электролитов Дебая и Хюккеля

Основные понятия электростатической теории сильных электролитов Дебая и Хюккеля. Расчет коэффициентов активности

Основы электростатической теории сильных электролитов Общие замечания

Растворы сильных электролитов и электростатическая теория растворов Особенности сильных электролитов

Сильные электролиты электростатическая теория

Термодинамическая и электростатическая теория растворов электролитов

Электролиты теория

Электростатическая теория сильных электролитов Основные предпосылки теории Дебая — Хюккеля

Электростатическая теория сильных электролитов Первые попытки создания теории сильных электролитов

Электростатические модели межионного взаимодействия. Некоторые проблемы теории растворов электролитов



© 2024 chem21.info Реклама на сайте