Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Полиакрилонитрил свойства

    Если в молекуле этилена один или несколько атомов водорода заменить на какой-либо другой и затем получить полимер, то можно синтезировать вещества с самыми разнообразными свойствами. Среди таких полимеров наиболее распространены поливинилхлорид, полиакрилонитрил и полистирол. Они получаются в результате следующих реакций  [c.220]

    До недавнего времени углеродные волокна и ткани из них применялись для изготовления теплозащитных материалов. Однако усовершенствованная технология получения тонких волокон, сочетающих высокую прочность и жесткость с другими специальными свойствами (термостойкость, электропроводность и др.) позволила создать армированные угольными волокнами металлы и пластики, отличающиеся малой жесткостью и высокой прочностью. Такие композиции все больше применяются в космической, ракетной и авиационной технике. Чаще всего применяют углеродные волокна из вискозы и полиакрилонитрила. [c.70]


    В случае совместной полимеризации хлористого винила с акрилонитрилом модификация свойств сополимера происходит в другом направлении. Полярность акрилонитрила намного превышает полярность хлористого винила. Полиакрилонитрил невозможно перерабатывать в изделия методом литья и прессования, так как полимер не переходит в пластическое состояние. Сополимеризация акрилонитрила с хлористым винилом придает сополимеру некоторую упругость, способность к ориентации при растяжении и растворимость в ацетоне. Из ацетонового раствора сополимера получают пленки и нити. [c.516]

    Химизация народного хозяйства имеет двоякое значение. Во-первых, она усовершенствует технологию производственных процессов, заменяя механические операции химическим воздействием. Во-вторых, знание химии позволяет более разумно использовать природные ресурсы и создавать новые материалы с необходимыми свойствами. Химический метод производства характеризуется более высокой интенсивностью, производительностью труда, он легче поддается механизации и автоматизации. Тем самым возникает возможность существенно экономить затраты труда и снижать себестоимость выпускаемой продукции. Достаточно сказать, что капрон в 10 раз, а вискоза в 100 раз дешевле натурального шелка. Химическая переработка древесины позволяет полностью исключить отходы производства, причем в производстве этилового спирта 1 м древесины заменяет 275 кг зерна или 700 кг картофеля. Возможность создания искусственных полимеров из продуктов нефтепереработки, природных и попутных газов, а также отходов коксохимии позволяет в огромных количествах экономить пищевое сырье. Известное выражение М. Бертло о том, что химия сама создает собственный объект исследования, теперь приобрело особое значение. Начиная с середины XX в. химикам удалось создать материалы, подобных которым не существует в природе. Например, производство волокна началось с природной целлюлозы, затем перешло к ее химически модифицированным формам (вискоза, ацетатный шелк), а в конечном итоге сделало скачок к синтетическим материалам на принципиально новой основе (полиэфиры, полиамиды, полиакрилонитрил). [c.12]

    Определенным ингибирующим свойством обладают также гидролизованный полиакриламид (ПАА) и гидролизованный полиакрилонитрил (гипан), которые в промысловых условиях обычно применяют ПАА —для повышения нефтеотдачи, гипан—для изоляционных работ. [c.244]


    В предпоследней главе первого раздела описаны строение н реологические свойства однофазных систем, а в последней подробно разбирается структура и поведение двухфазных систем полимер—растворитель. Особенно подробно рассматриваются вопросы, связанные с образованием и поведением студней. Это обусловлено тем, что через студнеобразное состояние проходят очень часто реальные растворы полимеров при добавлении к ним осадителя. В частности, так обстоит дело при формовании волокон из таких полимеров, как эфиры целлюлозы н полиакрилонитрил. [c.16]

    Сам ПО себе полиакрилонитрил не представляет большого интереса. Необходимость улучшения свойств полистирола, прежде всего повышения атмосферостойкости, стойкости к растворителям и ударной вязкости, привело к созданию ударопрочного полистирола — сополимеров на основе акрилонитрила, бутадиена и стирола (АБС) [160], стирола и акрилонитрила (САН), значение которых постоянно растет. [c.135]

    Полиакрилонитрил представляет собой порошок белого цвета или аморфную массу, легко растираемую в порошок. В отличие от других акриловых полимеров полиакрилонитрил не растворяется в обычных растворителях. Он растворяется в диметил-формамиде и концентрированных растворах некоторых неорганических солей — хлорида цинка, рода-нидов натрия и кальция, бромида лития и др. Полинак имеет относительно высокую теплостойкость. При нагревании в атмосфере азота до 200 °С свойства полиакрилонитрила не изменяются, при 220— 230 °С он размягчается и одновременно разлагается с выделением аммиака, а при 270 °С — с выделением цианистого водорода. В случае продолжительного нагревания при более низких температурах (до 100 °С) изменяется окраска полимера, уменьшается его растворимость. [c.47]

    Изучение гидродинамических свойств и светорассеяния разбавленных растворов позволяет получить определенную информацию о размерах и форме молекулярных клубков в растворе. Лишь в 0-растворителе макромолекулы приобретают конформацию статистического клубка, в котором взаимное расположение звеньев и сегментов может быть описано вероятностной кривой Гаусса. Тэта-состояния раствора можно достигнуть, либо варьируя соотношение растворитель - осадитель, либо изменяя температуру. Ниже приводятся значения 0-температур (в °С) для растворов полиакрилонитрила в различных растворителях  [c.115]

    Более подробно изучены свойства сополимеров, полученных прививкой акрилонитрила на полибутадиен с концевыми гидроксильными (сополимер полиакрилонитрила и олигобутадиена, ПАН-ОБД) и карбоксильными группами. [c.429]

    При температурах 160—275 °С из полиакрилонитрила в результате циклизации и дегидрирования образуется полимер, обладающий огнестойкостью и полупроводниковыми свойствами  [c.724]

    При механодеструкции полиакрилонитрила [50, 179], несмотря на отщепление небольших количеств НСМ, содержание азота практически остается тем же, но существенно изменяются оптические свойства полимера. Полиакрилонитрил приобретает видимую желтую окраску с максимумом поглощения, обязанным, по- идимому, [c.98]

    В предыдущей статье были рассмотрены получение и свойства волокон, содержащих полиакрилонитрил и ацетилцеллюлозу. Было показано, что ацетилцеллюлозу в волокне можно подвергнуть гидролизу. При этом образуются волокна, содержащие целлюлозу и полиакрилонитрил. Свойства таких волокон обсуждаются в настоящей статье. Рассмстрены результаты рентгенографических и оптических исследований. Измерена абсорбция воды и красителей, плотность, электрическое сопротивление и механические свойства волокон. Результаты показывают, что каждый полимер образует субмикроскопические области, чередующиеся с пустотами, которые образуются в процессе вытяжки. [c.106]

    Получение сополимера неупорядоченной структуры обычно связано с возникновением необходимости в продукте с определенными свойствами, отсутствующими у гомополимера. Например, гомополиыер полиакрилонитрила растворяется с трудом и волокно из него очень плохо окрашивается. Сополимеризация с незначительными количествами винилпиридина, акриламида или вн-нилацетата заметно улучшает растворимость и окрашн-ваемость этого полимера. [c.256]

    К-4. В результате неполного гидролиза полиакрилонитрила в присутствии щелочи получают реагент К-4. По стабилизирующим свойствам и термостойкости реагент К-4 мало отличается от гипана-0,7. Воздействие реагента К-4 на предельное СНС промывочных жидкостей несколько отличается от действия гипана. При концентрации реагента К-4 до 0,3%) величина СНС снижается незначительно и остается достаточно высокой даже в случае минерализации промывочной жидкости вплоть до полного насыщения поваренной солью. Исследованиями У. Д. Ма-маджанова и М. К. Турапова показана высокая термоустой- [c.163]

    Проведенные сравнительные опыты по определению вышеуказанных свойств технических водорастворимых полимеров поливинилового спирта (ПВС) полиакрилонитрила (ПАН) карбокси-метилцеллюлозы (КМЦ) полиакриламида (ПАА, АМФ, пушер, сепаран) полиэтиленоксида (ПОЭ, полиокс) — позволили обнаружить наибольише величины параметров двух последних, обеспечивающих образование пристенных адгезионных полимерных слоев, не смываемых трубопроводным потоком нефти. [c.168]


    Кроме типичных некристаллических и частично-кристаллических полимеров имеются полимеры с разной структурной упорядоченностью, например полиакрилонитрил (ПАН). Поэтому их 7 с и 7 пл в определенной мере зависят от способа получения и предыстории образцов. При сопоставлении теплофизических свойств полимеров одинаковые значения относительных температур Т = = Т/Тал и Ti=TIT , определяемые релаксационными явлениями, соответствуют равным долям теплового запаса сравниваемых полимеров по отношению к уровню тепловой энергии, необходимой для протекания процессов плавления и размягчения. [c.274]

    Полимераналогичные превращения служат как для доказательства макромолекулярного строения высокомолекулярных соединений, так и для синтеза новых полимеров, обладающп.ч специфичными свойствами. Например, реакцию внутримолекулярной циклизации используют для синтеза теплостойких полимеров. На рис. VII.9 iB качестве примера приведены кривые ДТА цромышлен ных образцов полиакрилонитрила (орлон), прогретых на воздухе и в атмосфере азота [4]. Кривые ДТА обоих образцов характеризуются наличием острого экзотермического пика при 308°С. Кривая ДТА орлона, прогретого па воздухе, имеет второй экзотермический пик при 328°С, в то время как для образца, прогретого в атмосфере азота, такого пи- [c.112]

    Увеличение числа последовательно чередующихся звеньев в макромолекулах при полимеризации или поликонденсации приводит к постепенному изменению свойств полимера. Однако по достижении больших значений молекулярной массы показатели этих свойств стремятся к постоянному значению. Это относится к прочности, теплостойкости, твердости и ряду других физических свойств полимеров. Температура стеклования полимера также является функцией его молекулярной массы С увеличением молекулярной массы температура стеклования вначале быстро повышается, а затем стремится к постоянному значению, которое зависит от кинетической гибкости цепи полимера. В полимерах с гибкими цепями температура стеклования приобретает постоянное значение , начиная с молекулярной массы порядка 1000—5000. В полимерах о жесткими цепями температуры стеклования становятся постоянными при молекулярных массах порядка 10 000—20 000 1 Биверс определил зависимость температуры стеклования Тс полиакрилонитрила от среднечислового значения молекулярной массы Мп в интервале от 8240 до 3 260 ООО. [c.83]

    Способность к специфическим межмолек улярным взаимодействиям придают полимерам ПА атомы кислорода карбоксильных и сложноэфирных групп, имеющие неподеленные электронные пары. В гораздо меньшей степени эти свойства проявляют я-связи ароматических ядер. В ПАН электронная плотность сосредоточена на атомах азота, это придает ПА и ПАН свойства адсорбента третьего типа. Полиарилат хорошо растворяется в органических растворителях, например в бензоле и эфире, а полиакрилонитрил в диметилформа-миде и диметилоульфоксиде. Поэтому эти полимеры можно использовать для модифицирования поверхности макропористых кремнеземов методом адсорбции из растворов. [c.85]

    Свойства полиакрилонитрила изменяются при длительном нагревании. При нагревании (при 200—270 С) нитрильные группы полиакрилонитрила взаимодействуют между собой внутримолекулярно с образованием нафтиридиновых циклов  [c.249]

    Наилучшим органическим растворителем для эксклюзионной хроматографии синтетических полимеров по комплексу свойств является тетрагидрофуран. Он обладает уникальной растворяющей способностью, низкой вязкостью и токсичностью, лучше многих других растворителей совместим со стирол-дивинил-бензольными гелями и, как правило, обеспечивает высокую чувствительность детектирования при использовании рефрактометра или УФ-детекгора в области до 220 нм. Для анализа высокополярных и нерастворимых в тетрагидрофуране полимеров (полиамиды, полиакрилонитрил, полиэтилен-терефталат, полиуретаны и др.) обычно используют диметилформамид или м-крезол, а разделение полимеров низкой полярности, например различных каучуков и полисилок-санов, часто проводят в толуоле или хлороформе. Последний является также одним из лучших растворителей при работе с ИК-детектором. о-Дихлорбензол и 1,2,4-трихлор-бензол применяют для высокотемпературной хроматографии полиолефинов (обычно при 135 С), которые в других условиях не растворяются. Эти растворители имеют очень высокий показатель преломления, поэтому иногда их целесообразно использовать вместо тетрагидрофурана для анализа полимеров с низким коэффициентом преломления, что позволяет повысить чувствительность при детектировании рефрактометром. [c.47]

    При нагревании полиакрилонитрила до 100—300 °С его цвет становится желтым, затем коричневым и черным. Окрашенные в черный цвет полисопряженные полимеры выдерживают нагревание до высоких температур и обладают полупроводниковыми свойствами и электронной проводимостью. Концентрация парамагнитных частиц в этих полимерах составляет 10 —10 на 1 г вещества. Реакциям, протекающим при нагревании полиакрилонитрила, посвящено большое количество работ  [c.389]

    Радиоак1ивное излучение влияет и на физико-механические свойства, и на электрические свойства, но в меньшей степени подвержены этому воадействию полимеры, содержащие циклы бензольных колец. Полимеры, содержащие сопряженные двойные связи не только между атомами углерода, но и азота, обладают полупроводниковыми свойствами. Некоторые полимеры получают свойства полупроводников в результате соответствующей тепловой обработки — пиролизаты. Примером такого полимера может служить полиакрилонитрил  [c.520]

    Полимерные электролиты - это многокомпонентные системы, включающие полимер, соль и, в случае гелевых электролитов, пластификатор. Физико-механические и физико-хими-ческие свойства ПЭ во многом определяются свойствами применяемых полимеров. В качестве полимерных матриц используют самые различные полимеры, например, полиэтиленоксид, полиакрилонитрил, поливинилхлорид, по-ливинилиденфторид и многие другие. Особый интерес вызывают сульфированные фторполимеры, так как они обладают высокой химической стабильностью и позволяют создать ПЭ с высокой униполярной электропроводностью по ионам лития. [c.109]

    Технология заключается в последовательной закачке в пласт раствора гидролизованного полиакрилонитрила и раствора хлористого кальция. При взаимодействии полимера с СаСЦ происходит образование концентрированной фазы по полимеру (фазовое разделение). Вьщелившаяся фаза во времени после полного расслоения в системе обладает свойствами геля, по типу коагуляционных гелей метилцеллюлозы. [c.107]

    В кислоторастворимых и поддающихся биохимическому разложению системах в качестве закупоривающего материала обычно используют измельченный карбонат кальция. Он полностью растворяется в кислоте и поставляется в виде широкой гаммы порошков различного гранулометрического состава (от нескольких миллиметров до десятых долей миллиметра). Его можно использовать при любой температуре в нефтяных скважинах. Таттл и Баркмэн установили, что при правильном подборе гранулометрического состава с помощью суспензий одного карбоната кальция можно проводить краткосрочный ремонт скважин, в которых для установления сообщаемости с пластом осуществлялась пулевая перфорация. Однако в большинстве случаев в эти суспензии необходимо добавлять полимеры для регулирования фильтрации и несущей способности. К широко используемым полимерам относятся КМЦ и полиакрилонитрил, которые нерастворимы в кислоте ксантановая смола (растворима в кислоте на 50%) и гуаровая смола, которые, как уже отмечалось, можно разложить с помощью ферментов производные крахмала и ГЭЦ, которые почти полностью растворяются в кислоте. Следует обратить внимание на то, что для обеспечения высокой термостабильности к ГЭЦ необходимо добавлять оксид магния. При необходимости, в качестве дополнительных материалов для регулирования фильтрации используются лигносульфонаты кальция. Как гуаровая смола, так и ГЭЦ имеют низкие значения отношения предельного динамического напряжения сдвига к пластической вязкости, к тому же они нетиксо-тропны, что является их преимуществом, так как существует возможность эффективно удалять из раствора газ и посторонние твердые примеси. В тех случаях, когда требуются высокая несущая способность и взвешивающие свойства, по-видимому, целесообразнее использовать ксантановую смолу. [c.433]

    Акрилоилкофермент А 1/434 Акрилоилхлорид 1/114 Акрилонитрил 1/117. 118 как сомономер 3/257 как условный канцероген 2/606 оргаиогелн 1/1002 полимер, см. Полиакрилонитрил получение 1/117-119, 1113, 1116 2/668, 672 3/407, 672, 673, 739 4/208, 265 свойства 1/48, 80, 114,139,270, 358, [c.538]

    Так, нам удавалось [265] получать из почти гомодисперсного полистирола с Л1 10 — правда, при огромных степенях вытяжки — волокна с прочностью л 1,5 ГПа при комнатных температурах и 4 ГПа — это уже почти половина теоретической прочности полистирола — при температуре жидкого азота. Сходные результаты ранее были нами получены на плохо кристаллизующемся полиакрилонитриле с М > 10 . Однако хотя и плохо, он все же кристаллизуется, и этот результат можно объяснить (см. разд. XVI. 3 именно потому что кристаллиты дефектны и заштрихованная область рис. XVI. 8, а достаточно обширна), а ориентация повышает и степень кристалличности образование дефектных КВЦ типа фибрилл Стэттона и большая протяженность цепей обеспечивают фиксацию. Правда, производительность подобного процесса очень мала (вытяжка ведется из разбавленного раствора) и целесообразность его определяется потребностью рекордных прочностных свойств именно полиакрилонитрила. [c.388]

    Полупроводниковые свойства таких полимеров, как поливииилен, полифенилен, продукт термообработки полиакрилонитрила и т д, объясняются наличием сопряженных двойных связей в макромоле куле [4] Энергия возбуждения (АИ ) я-электронов и перехода в зону проводимости невелика и падает с удлинением цепи сопряжения (возрастанием молекулярной массы)  [c.569]

    Особые свойства поливнниленов, такие, как окраска, полупроводниковые свойства, теплостойкость и т. д., объясняются наличием в -иакромолекуле системы сопряженных связей с делокализован-ными электронами, способными перемещаться по полимерной цепи. Термостойкий продукт, образующийся в результате многочасового нагревания полиакрилонитрила при 200° С и не загорающийся при длительном действии бунзеновской горелки — черный орлон или углеродное волокно [c.612]

    Многие из приведенных выше полимеров находят весьма разнообразное применение. Так, полиэтилен, полипропилен, полиамиды, полиуретаны, полиэфиры применяются в производстве пластических масс, пленок и химических волокон. Полиакрилаты и полиметакрилаты перерабатываются главным образом в пластические массы, а полиакрилонитрил используется для получения химического волокна нитрон. Полибутадиен и его производные (полиизопрен, полихлоропрен) являются синтетическими кау-чуками, некоторые полиуретаны и кремнийорганические полимеры также используются в качестве синтетических каучуков, обладающих ценными свойствами. [c.383]

    Применение электрического поля дает возможность изучить свойства граничных жидких фаз, образующихся на поверхности частиц [70, 85]. Из данных по упругой деформации седиментационных осадков частиц полимеров, происходящей под действием приложенной разности потенциалов, была оценена толщина аномальных жидких прослоек, сохраняющихся между частицами при их коагуляции. 3 случае осадков политрифторхлорэти-лена в гексиловом спирте она превышает 300 А. Для осадков полиакрилонитрила в спиртах и особенно в ацетоне толщина прослойки должна быть [c.135]

    Вопросы эпитаксии также имеют непосредственное отношение к затронутой проблеме. Эпитаксия — ориентированное нарастание слоев — известна давно. В частности, этим вопросом еще в XIX веке занимался Франкенгейм. Обширная библиография по эпитаксии приведена в работах [40, 346—348]. Свойства эпитаксиальных слоев различных материалов, главным образом полупроводников, интенсивно исследуются. Обнаружена зависимость от типа подложки не только структуры, но и прочностных, электрических и магнитных характеристик вакуумных конденсатов различных полупроводниковых материалов [346—348]. Впервые эпитаксиальный рост полимерных кристаллов на поверхности твердого тела описан в работах [349, 350], затем этот эффект был подробно изучен [245—249, 340, 351—359]. В частности, было обнаружено, что аминокислоты и олигопептиды образуют ориентированные наросты на минералах [345]. Свежеобразованные сколы галогенидов металлов (Na l, K I, KI, LiF), а также кварц оказывают ориентирующее влияние на расположение кристаллов полиметиленоксида, полипропиленоксида, полиэтилена, полиэти-лентерефталата, полиакрилонитрила, полиуретана, полиамидов. Эпитаксиальные явления в подобных системах могут быть следствием [354] ориентирующего влияния ионов подложки, расположенных в определенной последовательности. Кроме того, дислокации, образующиеся при расщеплении галогенидов металлов, также могут оказывать влияние на зародышеобразование, так как они имеют определенную ориентацию и сообщают поверхности повышенную энергию. В работе [359] указывается на эффект своеобразного фракционирования полимеров, заключающийся в том, что при определенных условиях склонность к эпитаксиальной кристаллизации обнаруживают самые большие макромолекулы [359]. [c.140]

    Для развития работ по исследованию физико-мехавтческих свойств и структуры высокомолекулярных соединений в 1959 г. В. А. Каргин (был приглашен в Институт нефтехимического синтеза АН СССР (ИНХС). Б лаборатории полимеризации олефинов он возглавил группу по изуче- ншо свойств и структуры полимеров, в которой успешно проводились исследования процессов структурообразования в изотактическом поли-лропилене, структурно-химических превращений полиакрилонитрила при его карбонизации и изучение структурной модификации расплавов полимеров введением малых добавок низкомолекулярных веществ. В 1962 г. В этом же институте была организована группа по новым методам полимеризации, одним из основных направлений которой было исследование процессов матричной полимеризации на синтетических макромолекулах, моделирующих некоторые аспекты биологического синтеза полимеров в клетках живых организмов. Эти работы, впервые поставленные в ИНХС, получили широкий отклик и дальнейшее развитие как в СССР, так и за рубежом в 1964 г. в ИНХС В. А. Каргиным была организована еще одна группа, в которой развитие получили работы в области химической модификации полиолефинов и некоторых других полимеров [c.10]

    Исследования продуктов термического превращения полиакрилонитрила, проведенные Топчиевым, Кренцелем и сотр. [326], показали, что они обладают полупроводниковыми свойствами и относятся к группе полимеров, имеющих в своих макромолекулах непрерывную цепь сопряжения (полисонряжение). Свойства этих соединений рассмотрены в ряде обзоров и монографий [273—279]. [c.211]


Смотреть страницы где упоминается термин Полиакрилонитрил свойства: [c.47]    [c.164]    [c.195]    [c.85]    [c.485]    [c.309]    [c.82]    [c.393]    [c.59]    [c.160]    [c.133]   
Прогресс полимерной химии (1965) -- [ c.211 ]

Итоги науки химические науки химия и технология синтетических высокомолекулярных соединений том 3 выпуск 1 книга 2 (1959) -- [ c.438 , c.441 , c.443 , c.447 ]

Прогресс полимерной химии (1965) -- [ c.211 ]

Химия и технология синтетических высокомолекулярных соединений Том 9 (1967) -- [ c.713 , c.714 ]

Основы химиии и технологии химических волокон Часть 2 (1965) -- [ c.175 ]

Технология пластических масс Издание 2 (1974) -- [ c.138 ]

Основы химии и технологии производства химических волокон Том 2 (1964) -- [ c.175 ]

Волокна из синтетических полимеров (1957) -- [ c.12 , c.58 ]

Химия и технология полимеров Том 1 (1965) -- [ c.55 , c.524 , c.548 , c.629 ]

Синтетические полимеры и пластические массы на их основе Издание 2 1966 (1966) -- [ c.353 , c.356 ]




ПОИСК





Смотрите так же термины и статьи:

Полиакрилонитрил



© 2025 chem21.info Реклама на сайте