Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Алюминий сплавы, коррозия в морской вод

    В атмосферных условиях и в воде допускается контакт между нержавеющей сталью и алюминием, и он не представляет опасности. В растворах хлористого натрия, в пластовой и в морской воде контакт алюминия и его сплавов с нержавеющей сталью интенсифицирует скорость их коррозии. В морской воде контактная коррозия проявляется особенно сильно, когда большая поверхность нержавеющей стали контактирует с малой поверхностью алюминиевого сплава. Особенно опасен контакт с медными сплавами, даже при отсутствии электрического контакта. Существенную роль при этом играет вторично осаждающаяся медь, образующая эффективные местные катоды. Если алюминий анодирован или окрашен, то это значительно снижает опасность контактной коррозии. [c.59]


    Следует, однако, иметь в виду, что потенциалы питтингообразования алюминия, алюминиево-магниевых и алюминиево-магниево-марганцевых сплавов в морской воде практически не зависят от их химического состава. Различие в поведении этих сплавов проявляется в том, что в морской воде у них устанавливаются неодинаковые потенциалы коррозии. У алюминиево-цинково-магниевых сплавов потенциал питтингообразования более отрицателен, чем у других алюминиевых сплавов. Для этога же сплава область пассивации наиболее узкая. Общим в коррозионном поведении всех алюминиевых сплавов в морской воде является то, что их коррозия, как правило, протекает с катодным контролем [18]. [c.29]

    Н2О. в промышленных и морских атмосферах алюминиевые сплавы подвергаются коррозии вследствие разрушения окисных пленок. Коррозионная стойкость алюминия и его сплавов зависит от чистоты обработки металла. Наибольшей коррозионной стойкостью обладает алюминий с отшлифованной и отполированной поверхностью. Царапины, надрезы, раковины, поры усиливают процесс разрушения алюминиевых сплавов. [c.73]

    Алюминий и его сплавы являются важным конструкционным материалом в самолето- и ракетостроении. На воздухе поверхность алюминия и его сплавов покрыта естественной окисной пленкой, толщина которой в обычных атмосферных условиях 0,005—0,2 мк. Пленка повышает химическую устойчивость алюминия, но не может служить надежной защитой против коррозии. При эксплуатации изделий с естественной окисной пленкой во влажной атмосфере или в морской, воде на поверхности алюминия образуется белый налет продуктов коррозии. Для повышения сопротивления коррозии окисную пленку на алюминии и его сплавах искусственно утолщают химическим или электрохимическим оксидированием. [c.145]

    Латуни бывают простые, т. е. состоящие из меди и цинка (до 45 %), и специальные, которые наряду с медью и цинком содержат другие элементы. Поэтому коррозионная стойкость латуней определяется их химическим составом. Простые латуни менее стойки, чем медь, тогда как специальные латуни, содержащие 51, А1, N1, Сг, Мп и другие, по коррозионной стойкости не уступают меди. Так, введение в простую латунь алюминия повышает коррозионную стойкость сплава к атмосферной коррозии, а кремния — в морской воде. Введение марганца и никеля делает латунь более стойкой к атмосферной коррозии, морской воде, воздействию хлоридов, чем простые латуни. Механические свойства, химический состав и области применения некоторых латуней приведены в табл. 7. [c.61]


    Другая серия опытов, проведенных в течение пяти лет в условиях приморского влажного субтропического климата, была посвящена изучению вопросов контактной коррозии титановых сплавов. Результаты опытов показали, что титан и его сплавы как в отдельности, так и в контакте являются коррозионностойкими не только в условиях атмосферы, но и в море на разных глубинах (3- 8 м). Отмечено, что обрастание на титане меньше, чем на поверхности нержавеющих сталей. Контакт титановых сплавов (АТЗ, 0Т4) с углеродистыми и низколегированными сталями и со сплавами алюминия в условиях морской атмосферы ускоряет процесс разрушения последних. [c.84]

    В табл. 31 приведен гальваническим ряд металлов, рас 10,1о-женных по возрастающе величине стационарного электродного потенциала в морской воде, текущей со скоростью 649 м/мин. Как видно из таблицы, разность электродных потенциалов между титаном и углеродистой сталью, алюминием, сплавами на медной основе довольно велика, поэтому контактная коррозия между ними может быть значительной. Разность потенциалов между титаном и другими устойчивыми в морской воде металлами очень незначительна, что предопределяет малую вероятность контактной коррозии между этими. металлами. Эти выводы подтверждаются данными диаграммы (фиг. 29), где приведены результаты испытаний титана в контакте с другими металлами, применяемыми в морских конденсаторах. В морской воде [c.61]

    Гальванические эффекты. Опыт применения титановых сплавов в морских условиях показывает, что их следует использовать только в тех случаях, когда могут быть оправданы затраты, связанные с более высокой по сравнению со сталью и алюминием стоимостью. Морских конструкций, выполненных целиком из титановых сплавов, пока не существует, поэтому титан всегда соседствует в конструкциях с другими металлами. При наличии электрического контакта между титаном и каким-либо металлом происходит увеличение площади поверхности катода, связанного с локальными анодами на этом втором металле. Коррозия таких металлов, как сталь и алюминий, контролируется катодными процессами, поэтому возрастание площади катодной поверхности при образовании гальванической пары с титаном способствует усилению коррозии более анодного элемента пары. Как видно из приведенного электрохимического ряда напряжений, пассивный титан является более катодным металлом по отношению практически ко всем распространенным конструкционным материалам. [c.120]

    Основные параметры, определяющие скорость и характер коррозии алюминия в морской воде. — это скорость движения воды, концентрация растворенного кислорода, pH и длительность эксплуатации. Например, при повышении скорости движения воды до 1,6 м/с скорость коррозии сплава с 3 % магния возрастает до 9,0 мм/год. Однако по дру-24 [c.24]

    Применение цинка очень разнообразно. Значительная часть его идет для нанесения покрытий на железные и стальные изделии, предназначенные для работы в атмосферных условиях или в воде. При этом цинковые покрытия в течение миогих лет хорошо защищают основной металл от коррозии. Однако в условиях высокой влажности воздуха при значительных колебаниях температуры, а также в морской воде цинковые покрытия неэффективны. Широкое промышленное использование имеют сплавы цинка с алюминием, медью и магнием. С медью цинк образует важную группу сплавов — латуни (см. стр. 571). Значительное количество цинка расходуется для изготовления гальванических элементов. [c.621]

    Сплавы на основе меди широко применяют в условиях погружения в морскую воду. Коррозионное поведение этих сплавов в морской воде несколько отличается от поведения других металлов, таких как сталь и алюминий. Прежде чем перейти к анализу коррозионных данных, рассмотрим факторы, влияющие на коррозию меди и ее сплавов в морской воде, а также основные механизмы коррозионного разрушения таких сплавов. [c.97]

    Применение вазелина и петролатума оказалось также эффективным для предупреждения щелевой коррозии Латуни, алюминия и его сплавов в морской воде. [c.259]

    На образцы титана одинаковых размеров наплавлялись припои различного состава. Испытания проводились в морской воде в течение 90 дней. Наплавки из чистого серебра и сплава серебра с марганцем не корродировали. Наплавки, содержащие алюминий, подвергались коррозии. Особенно сильно корродировали наплавки из чистого алюминия. Таким образом, для пайки титана лучше всего использовать серебро или сплав серебра с марганцем. [c.92]

Рис. 76. Общая и питтинговая коррозия плакированного алюминием сплава 3003 (Алклед 3003) в морской воде и в иле иа различных глубинах [90] Рис. 76. Общая и <a href="/info/10627">питтинговая коррозия</a> плакированного <a href="/info/14454">алюминием сплава</a> 3003 (<a href="/info/1290975">Алклед</a> 3003) в <a href="/info/69623">морской воде</a> и в иле иа различных глубинах [90]

    С повышением частоты алюминия возрастает и его коррозионная стойкость. Одиако, если в материалах высокой чистоты возникают питтинги, то они, как правило, бывают глубже (хотя и меньше числом), чем в менее чистых сплавах. В некоторых специальных областях применения, особенно в случае контакта с аммиачными растворами или с чистой водой при высоких температурах и давлениях, наличие в технических сплавах примесей железа и кремния дает положительный эффект и замедляет коррозию. Содержание магния до 5% повышает коррозионную стойкость алюминиевых сплавов в морской воде. [c.83]

    В агрессивных растворах, в морской воде, в почве применяют электрохимический метод защиты. Одной из разновидностей этого метода является метод протекторной защиты, который применяют в нейтральных средах. К стальной конструк-дии 1 присоединяют пластины из чистого цинка 2 или сплава цинка с алюминием (рис. 92). При этом образуются макро-гальванические элементы, в которых цинк (или сплав цинка) выполняет функцию анода, а конструкция, которую защищают от коррозии, становится катодом. При этом цинковые пластины (протектор) растворяются, а коррозия конструкции (катода) вследствие сдвига электродного потенциала в более отрицательную область прекращается или сильно уменьшается. Другая разновидность электрохимического метода — катодная защита. Конструкцию 1 для защиты от коррозии присоединяют к отрицательному полюсу генератора постоянного тока, положительный полюс — к куску железа 2 (рис. 93). Это сдвигает потенциал защищаемой конструкции в область более отрицательных значений, что приводит к сильному торможению коррозии. [c.376]

    При получении покрытия из расплава в ванну с расплавленным алюминием обычно добавляют кремний, чтобы затруднить образование слоя хрупкого сплава. Полученные из расплава покрытия используют для повышения устойчивости к окислению при умеренных температурах таких изделий, как отопительные устройства и выхлопные трубы автомобилей. Они стойки к действию температуры до 480 °С. При еще более высоких температурах покрытия становятся огнеупорными, но сохраняют защитные свойства вплоть до 680 °С [21]. Использование алюминиевых покрытий для защиты от атмосферной коррозии ограничено вследствие более высокой стоимости по сравнению с цинковыми, а также из-за непостоянства эксплуатационных характеристик. В мягкой воде потенциал алюминия положителен по отношению к стали, поэтому покрытие является коррозионностойким, В морской и некоторых видах пресной воды, особенно содержащих С1" и SO4", потенциал алюминия становится более отрицательным и может произойти перемена полярности пары алюминий—железо. В этих условиях алюминиевое покрытие является протекторным и катодно защищает сталь. Показано, что покрытие из сплава А1—Zn, состоящего из 44 % Zn, 1,5 % Si, остальное — Al, имеет очень высокую стойкость в морской и промышленной атмосферах. Оно защищает также от окисления при повышенных температурах. [c.242]

    МОНЕЛЬ-МЕТАЛЛ — сплав на основе никеля, содержит до 30% меди, 2—3% железа, марганец, иногда алюминий. Очень устойчив против коррозии в морской и пресной водах, в щелочах, органических кислотах и красителях. Обладает хорошими механическими и термическими свойствами. М.-м. широко применяется в электротехнике, судостроительной, электровакуумной, текстильной, химической и других промышленностях, в медицине, а также в аппаратостроении. [c.164]

    Протекторная защита и электрозащита. Протекторная защита применяется в тех случаях, когда защищается конструкция (подземный трубопровод, корпус судна), находящаяся в среде электролита (морская вода, подземные, почвенные воды и т. д.). Сущность ее заключается в том, что конструкцию соединяют с протектором — более активным металлом, чем металл защищаемой конструкции. В качестве протектора при защите стальных изделий обычно используют магний, алюминий, цинк и их сплавы. В процессе коррозии протектор служит анодом и разрушается, тем самым предохраняя от разрушения конструкцию (рис. 69). По мере разрушения протекторов их заменяют новыми. [c.254]

    Магналии—сплав алюминия с магнием (5—13%), Используется в авиа- и машиностроении, в строительстве. Магналии стоек к коррозии в морской воде, поэтому его применяют в судостроении. [c.230]

    Металлизационные покрытия цинком, алюминием и их сплавами служат для защиты стали от атмосферного воздействия. Толщина покрытия составляет 50—150 мкм. Для защиты от осадков и морской воды используются покрытия несколько большей толщины. Эти покрытия обеспечивают протекторную защиту стали (так же, как и покрытия, полученные методом нанесения расплавленного металла). Ни один элемент соединения с основным металлом не вступает в реакцию коррозии. Тормозящее действие продуктов коррозии больше, чем в покрытиях, полученных горячим методом или электроосаждением, из-за пористости напыляемых покрытий. Это позволяет несколько увеличить срок службы. [c.81]

    Морская вода содержит большое количество солей, главным образом хлориды, и имеет довольно высокую электропроводность. Эгим обстоятельством объясняется электрохимический характер коррозионных процессов в морской воде и пленке морской воды, образующейся на металлических конструкциях в воздухе. При наличии значительной концентрации хлорид-ионов и растворенного кислорода больишнство технически важных металлов (магний, алюминий и их сплавы, цинк, кадмий, коррозионностойкие и конструкционные стали могут переходить в состояние пробоя и подвергаться питтинговой коррозии. [c.42]

    В Советском Союзе подробные исследования коррозия и защиты сплавов алюминия в конструкциях нефтепромысловых сооружений были проведены в Гипроморнефти. Исследованы особенности коррозионного и электрохимического поведения алюминиевых сплавов в морской воде, показано принципиальное отличие механизма воздействия морской воды на алюминий и стальные и зДелия, рассмотрены характерные виды коррозионного разрушения алюминиевых сплавов и некоторые методы защиты. [c.24]

    Известна попытка плакирования магниевого сплава алюминием Прессованные полосы из сплава типа MAI обертывали лентой из чистого алюминия и в таком виде прокатывали. Плакирующий слой после прокатки был прочно сцеплен со сплавом сердцевины. Металлографическое исследование не обнаружило диффузии составляющих сердцевины в плакирующий слой. Коррозионные испытания, проводивщиеся в искусственной морской воде, показали, что по кромкам плакированного материала происходила интенсивная коррозия. При замене алюминия сплавом А1 + 3% Mg интенсивность коррозии по кромкам значительно понизилась. [c.181]

    Контакты алюминиевых сплавов со сталью, в морской воде и в морской атмосфере вызывают сильную коррозию алюминиевых сплавов [81]. Контакты алюминия с алюминиевыми сплавами, содержащими медь, приводят > приморской атмосфере к коррозионному разрушению алюминия. По дан- ым ряда авторов, даже оксидирование алюминия не дает положительных >езультатов при его защите от контактной коррозии. Некоторые исследова- ели считают контакт алюминиевых сплавов с другими металлами допустимым при условии их предварительной защиты цинком, алюминием или кад-1ием, но не рекомендуют применять алюминий в паре с медью и медными плавами, с никелем и никелевыми сплавами. В последнем случае рекомен- [c.83]

    Питтинговая точечная) коррозия — коррозия металла в виде отдельных точечных поражений, когда остальная поверхность металла находится в пассивном состоянии. Питтинговой коррозии подвержены углеродистые и нержавеющие стали, сплавы на основе алюминия, никеля, титана и других легкопассивирую-щихся металлов и сплавов в морской воде, рассолах холодильных машин, смесях соляной и азотной кислот и т. д. [c.39]

    Постоянные растягиваюшие напряжения (внутренние и внешние) увеличивают скорость коррозии почти пропорционально их величине и вызывают появление коррозионного растрескивания. Коррозионное растрескивание нержавеющей высокохромистой стали и сплавов алюминия наблюдается в морской воде, а малоуглеродистой стали и никеля —в растворах едкого натра. [c.26]

    Контакт со сталью, хотя и менее опасен, чем контакт с медью или свинцом, также может ускорять коррозию алюминия. Вместе с гем в некоторых естественных водных средах и в ряде других случаев алюминий может быть защищен за счет черных металлов. Нержавеющие стали способны усиливать разрушение алюминия, особенно в морской воде и в морской атмосфере, в то же время высокое. электрическое сопротивление поверхностных окис-ных пленок обоих материалов заметно ослабляет контактные явления в менее агрессивных средах. Титан ведет себя в эгом от юшении аналогично стали. Сплавы алюминий- цннк, используемые в качестве расходуемых анодов для защиты стальных конструкции, содержат также небольшие добавки олова, индия или ртути, улучшающие характеристики растворения и смещающие потенциал к более отрицательным значениям. [c.83]

    В неагрессивной атмосфере алюминиевые сплавы достаточно стойки в промышленной и морской атмосфере сплавы алюминня подвергаЕОтся коррозии преимущественно язвенной. [c.58]

    Плакирование является одним из основных способов защиты от коррозии легких силавов на основе алюминия, главным образом сплавов типа дюралюминия. Известно, что дюралюминий как конструкционный материал применяется вследствие его высоких ме.чанических свойств и малого удельного веса. Однако этот сплав обладает низкой сопротивляемостью корроз)ш, особенно в морской атмосфере. [c.327]

    Для защиты высокопрочных сплавов наиболее широко применяют плакирование. В качестве плакирующего слоя используют чистый алюминий или сплав алюминия с 1% 2п. Толщина плакирующего слоя составляет от 2 до 7,5% от толщины основного металла. Плакирование листов и плит происходит в процессе горячей прокатки, для производства труб с внутренней плакировкой применяют полые слитки, в которые вставляют трубу из алюминия. При прессовании слой алюминия прочно приваривается к основному металлу. Плакирующий слой является обычно анодным по отношению к сердцевине, поэтому его защитное действие носит не только изолирующий, но и электрохимический характер, в результате чего даже те участки алюминиевого сплава, на которых плакировка нарушена, защищены от коррозии. Эффект электрохимической защиты тем выше, чем больше электропроводность среды. Так, при разрушении плакирующего слоя по длине образца на 25 мм потеря прочности сплава Д16Т в морской воде составила 5%, а в 0,01%-ном растворе хлористого натрия — 35%. В меньшей степени плакирующий слой защищает электрохимически в условиях атмосферной коррозии. В хорошо проводящей коррозионной среде эффективность электрохимической защиты плакирующего слоя снижается по мере уменьшения разности потенциалов между металлами плакировки и металлом защищаемого сплава. [c.62]

    Анодирование существенно повышает коррозионную стойкость алюминиевых сплавов. Так, предел прочности образцов сплава В95 за 30 сут. испытаний в морской воде с 0,1% перекиси водорода снизился в результате коррозии с 600 до 270 МН/м . Предел прочности анодированного сплава за 130 сут. снизился лишь до 520 МН/м2. Анодирование является также хорошей защитой алюминия и его сплавов от почвенной коррозии в песке и торфе. Глубина проникновения коррозии на анодированном сплаве типа AШg во влажной почве не превосходила 0,005 мм, а на неанодированном — 0,40 мм [10]. [c.63]

    При 368-суточных испытаниях различных промышленных сплавов алюминия в морской воде возле Ки-Уэст во Флориде их коррозионное поведение (наличие или отсутствие питтинга) зависело от присущего им коррозионного потенциала [7]. На сплавах с потенциалами от —0,4 до —0,6 В (большинство из них содержало легирующую добавку меди) образовались питтинги со средней глубиной 0,15—0,99 мм. На сплавах с более отрицательными значениями потенциала (от —0,7 до —1,0 В) питтинг практически не образовывался. Причина такого поведения сплавов становится понятной, если сопоставить указанные области коррозионных потенциалов со значением критического потенциала питтингообразования в 3 % растворе Na l, которое составляет —0,45 В (см. разд. 5.5.2). Контакт образцов сплавов, склонных к питтингу, с пластинами активного алюминиевого сплава (см. разд. 12.1.2), который обеспечивал поляризацию металлов примерно до —0,85 В в основном успешно предотвращал образование питтинга в течение всего периода испытаний. Результаты этих испытаний в реальных условиях подтверждают предположение, что в отсутствие щелей алюминий и его сплавы при потенциалах ниже критического значения не подвергаются питтинговой коррозии. [c.343]

    Вообще говоря, в морской воде в качестве окислителя могут выступать ионы НзО или молекулы воды и растворенный кислород. Исследованию катодных процессов в хлоридсодержащих средах были посвящены работы Г. В. Акимова, Н. Д. Томашева, Г. Б. Кларк, И. Л. Розенфельда. Как показали исследования, коррозия магния и его сплавов протекает в основном за счет водородной деполяризации алюминий и его сплавы, коррозионностойкие и конструкционные стали, никель и никелевые сплавы, медь, медные сплавы подвергаются коррозии с кислородной деполяризацией. Растворимость кислорода в морской воде ограничена. При протекании коррозии с кислородной деполяризацией очень часто скорость катодного процесса определяется диффузией кислорода и поверхноети металла. В таких условиях перемешивание среды или перемещение поверхности металла относительно среды является важным фактором, который может оказать существенное влияние на характер коррозии. При перемешивании скорость катодного процесса будет уве-личиваться и металл из пассивного состояния может переходить в пробойное состояние (см. рис. 18). [c.43]

    КЦА (ТУ 6-02-1042-76) — карбонат циклогексиламина, порошок белого цвета, хорошо растворим в воде и спиртах. Предназначен для защиты от атмосферной и микробиологической коррозии изделий из черных металлов, алюминия и его сплавов при эксплуатации, хранении, консервации и транспортировании в различных климатических условиях (континентальных, морских и арктических). Применяют в виде водных и спиртовых растворов, а также в виде добавки к ингабитору НДА в количестве 10-15 % (мае. доля) для получения ингабированной бумаги. Обеспечивает срок защиты изделий от двух до трех лет. [c.377]

    Способы защиты от коррозии металлов в морской воде заключаются в следующем а) очистке поверхности металла от окалины, ржавчины и покрытии ее лаком, этиленовыми красками, мастикой фенол-формальдегидной, каменноугольной или на битумной основе, применении фосфотирования, цинкования, оксидирования (для алюминия) б) использовании коррозионно-стойких металлов - меди и ее сплавов в) катодной и протекторной защите в комбинации с защитными покрытиями или без них г) применении ультразвуковой защиты совместно с катодной и протекторной защитой д) использовании элект-родренажной защиты. [c.43]

    Исследованиями, выполненными в институте Гипроморнефть, показана принципиальная возможность применения для этих целей высокопрочных и коррозионио-стойких алюминиевых сплавов. Скорость коррозии алюминиевых сплавов относительно невелика в подводной зоне и донном грунте и еще меньше -в зоне периодического смачивания и в морской атмосфере. Это различие связано с тем, что в зоне периодического смачивания, несмотря на более высокую температуру электролита, существует возможность обильного доступа кислорода воздуха к поверхности сплава. Поэтому образующаяся окисная пленка настолько прочна и монолитна, что поддерживает сплав алюминия в пассивном состоянии. [c.204]

    Изменение этих величин возможно за счет изменения состава сплава (очистка от примесей, вызывающих по каким-то причинам усиление коррозии, легирование). Уменьи1ение содержания углерода в коррозионностойких сталях приводит к уменьшению возможности выпадения карбидов хрома по границам зерен прн отжиге, что позволяет избежать межкристаллитной коррозии коррозионноотойких сталей [31 ]. Уменьшение концентрации примесей фосфора также приводит к снижению межкристаллитной коррозии коррозионностойких сталей [37]. Наличие примесей в техническом магнии и алюминии, повышающих скорость катодного процесса, приводит к тому, что указанные металлы в морской воде находятся в состоянии пробоя. Очистка металлов от примесей вызывает снижение скорости катодного процесса — магний и алюминий переходят в пассивное состояние [17]. [c.46]


Смотреть страницы где упоминается термин Алюминий сплавы, коррозия в морской вод: [c.299]    [c.59]    [c.84]    [c.247]    [c.59]    [c.63]    [c.18]   
Кислородная коррозия оборудования химических производств (1985) -- [ c.28 ]




ПОИСК





Смотрите так же термины и статьи:

Алюминий Коррозия

Алюминий в сплавах



© 2024 chem21.info Реклама на сайте