Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Водород влияние природы растворителя

    При четко определенной лимитирующей стадии процесса становится возможным надежно определять влияние природы растворителя на скорость реакций каталитического гидрирования в растворах. В зависимости от лимитирующей стадии процесса четко проявляется воздействие двух основных факторов 1) изменение энергии связи водорода с поверхностью под влиянием растворителя и 2) изменение коэффициента распределения гидрируемого вещества между раствором и поверхностью катализатора. [c.201]


    Таким образом, для слабо адсорбирующихся соединений (малое смещение потенциала в ходе реакции) влияние природы растворителя проявляется прежде всего в изменении энергии связи водорода с поверхностью катализатора. Для 0 = 0,5 энергия связи Р1—Н растет с повышением pH (в пределах 1—13) от 258 до 269 кДлэнергия связи этиленовых углеводородов (гексен-1) уменьшается от 93,4 до 90,7 кДж/моль, а для ацетиленовых углеводородов — с 212 до 205,5 кДж/моль. [c.201]

    В смешанных растворителях данные не вполне однозначны. Для металлов с низким перенапряжением природа растворителя играет меньшую роль. Характер изменения перенапряжения с изменением растворителя точно не установлен, хотя в литературе имеются указания на то, что для меди и никеля в спиртовых растворах оно выше, чем в водных. Влияние pH раствора на перенапряжение водорода с наибольшей полнотой изу- [c.400]

    В монографии рассмотрены главным образом теоретические основы экстракции внутрикомплексных соединений. Большое внимание уделено, в частности, влиянию концентрации ионов водорода и природы растворителя, кинетике экстракции. Подробно обсуждается зависимость экстракции комплексов от их состава и строения. Рассмотрены основы аналитического использования экстракции внутрикомплексных соединений выбор реагента, избирательность, особенности экстракционного концентрирования следов, рациональное сочетание экстракционного отделения с методами последующего определения, радиохимические экстракционные методы. [c.2]

    При исследовании влияния природы растворителя на скорость и механизм каталитической гидрогенизации удалось установить, что оно определяется следующими основными факторами 1) коэффициентом распределения гидрируемого вещества и продуктов реакции между раствором и поверхностью катализатора 2) энергией связи атомов реагирующих компонентов с поверхностью катализатора 3) соотношением скоростей активации водорода и непредельного соединения и скоростей снятия их с поверхности 4) адсорбционной способностью самого растворителя 5) наличием в растворе ионов или полярных веществ, которые способны к избирательной адсорбции и, следовательно, к изменению скорости реакции и ее избирательности 6) растворимостью водорода в жидкости, скоростью его диффузии на границе раздела газ—жидкость, зависящей от поверхностного натяжения и вязкости жидкости. [c.101]


    Одним из основных способов регулирования селективности реакций жидкофазной гидрогенизации по промежуточным продуктам служит варьирование природы и состава растворителя. Установлено, что селективность гидрогенизации определяется адсорбционными состояниями реагирующих веществ и, в первую очередь, водорода. Характеристики адсорбционных состояний зависят от природы и состава растворителя. Поэтому одним из основных направлений в разработке научно-обоснованных методов синтеза оптимальных каталитических систем для реакций жидкофазной гидрогенизации является исследование влияния природы и состава растворителя на термодинамические закономерности процесса адсорбции водорода. [c.21]

    В табл. 152 приведены данные, показывающие влияние природы растворителя на скорости бимолекулярного отщепления Е2. В качестве растворителей использованы смеси этилового или к-пропилового спирта с водой, в которых вода, конечно, является наиболее полярным компонентом. То, что реакции типов 1 и 3 бимолекулярны, доказывает их кинетический порядок, а величины, приведенные в таблице, представляют собой константы скоростей реакций второго порядка. Реакции типа 4 — сольволитические, и поэтому приведенные в таблице величины являются константами скоростей реакций первого порядка. Одпако вследствие большой чувствительности скоростей к добавлению оснований (даже слабых) можно полагать, что реакция в основном бимолекулярна. Этот вывод подтверждается сильным уменьшением скорости при замене отщепляющегося водорода на тритий [47]. [c.564]

    Бром присоединяется при температуре 20°С селективно и количественно, но уже при обыкновенной температуре конкурирует реакция замеш,ения, на что указывает выделение бромистого водорода. Повышение температуры, присутствие света и влаги также ускоряет реакцию замеш,ения. На протекание этой реакции оказывает влияние природа растворителя и положение двойной связи олефина. [c.36]

    Наблюдается тенденция увеличения содержания ванадия при повышении молекулярной массы фракций асфальтенов. Обнаружена антибатность в изменении по фракциям карбоксильных групп и ванадия, что позволило предположить наличие связи между ними, приводящей к уменьшению подвижности атомов водорода [242]. При деасфальтизации в исходном нефтяном остатке содер-. жание ванадия снижается на 97 %. На количество извлеченного вместе с САВ ванадия существенное влияние оказывает природа растворителя. Ниже показана зависимость содержания извлеченного ванадия от природы растворителя (в %)  [c.302]

    После классических работ Линстеда и сотр. [289] по стереохимии гидрирования ароматических колец полученные ими закономерности неоднократно экстраполировались на другие ненасыщенные системы. Сейчас общепринято считать, что гидрирование приводит к 1 мс-присоединению водорода с менее затрудненной стороны молекулы. Однако применимость этого правила ограничена рядом условий. Например, природа растворителя (нейтральный или кислый), так же как и природа катализатора, может оказать глубокое влияние на ход гидрирования осложняющим фактором может явиться возможность изомеризации двойной связи перед восстановлением не всегда легко решить, какая из сторон молекулы наиболее плоская и доступная для водорода и наконец истинный механизм каталитического гидрирования, до сих пор не выяснен, а следовательно, интерпретировать результаты нужно очень осторожно. [c.646]

    Влияние диффузии. Скорость диффузии растворителей в полиамиды зависит от природы растворителя, концентрации, температуры. Ниже представлены примеры значений коэффициентов диффузии для ПА 6 при 25 °С, полученных с применением цветового индикатора проникновение ионов водорода кислоты в образец определяли по скорости движения окрашенною слоя  [c.84]

    Скорость реакции каталитической гидрогенизации в растворах в сильнейшей степени зависит от величины адсорбции реагирующих веществ на поверхности катализатора. При этом соотношения концентраций на поверхности в момент реакции определяются скоростями активации водорода на поверхности и скоростью его снятия непредельным соединением. В зависимости от природы растворителя меняется коэффициент распределения растворенного непредельного соединения между раствором и поверхностью катализатора. В результате этих часто противоположных влияний на поверхности катализатора устанавливается в ходе процесса известное, временное равновесие, которое определяет лимитирующую стадию реакции. Для того чтобы установить механизм реакции в данных условиях и обнаружить лимитирующую стадию реакции, требуется обычно проведение длительных кинетических опытов, в которых исследуется влияние концентрации реагирующих веществ, продуктов реакции, температуры и природы растворителя на скорость реакции. При этом все же получаются не всегда однозначные выводы. Вместо этого можно измерять потенциал катализатора во время реакции и на основании этого сразу же получить представление о степени заполнения поверхности катализатора водородом и непредельным соединением [1]. В случае необходимости могут быть приняты меры для повышения активности катализатора как за счет изменения химического состава катализатора, так и за счет изменения природы растворителя или внесения в раствор солей, кислот и оснований. [c.153]


    Роль материала электрода и природы растворителя в анодном фторировании органических соединений изучена в той же работе [53]. Авторы проводили электролиз во фтористом водороде, в ацетоиитриле, этиловом спирте и в уксусной кислоте кроме того, исследовалось влияние небольших добавок воды к этим растворителям. Оказалось, что органические растворители обычно недостаточно инертны для получения удовлетворительных результатов. Никелевые и угольные аноды сравнительно легко разрушаются. Платина, хотя и более устойчива, ие вполне инертна. [c.173]

    Известно, что скорость и селективность реакций жидкофазной гидрогенизации определяют величины и теплоты адсорбции индивидуальных форм водорода, связанных поверхностью металлов и катализаторов на их основе. Поэтому установление взаимосвязи характеристик адсорбционных состояний водорода и их изменения под влиянием природы и состава растворителя, скорости и селективности реакций жидкофазной гидрогенизации может рассматриваться как одно из основных направлений для разработки методов научно-обоснованного подбора оптимальньгх каталитических систем для проведения гидрогенизационных процессов. [c.137]

    В связи с необходимостью более широкого использования в качестве сырья платформинга различных дистиллятов сернистых нефтей изучение кинетики реакции гидрогенолиза сераорганических соединений в присутствии широко применяемых в нефтепереработке платиновых катализаторов приобретает важное значение. В настоящее время эта реакция изучена недостаточно. Поэтому целью данной работы является изучение влияния молекулярного веса и природы растворителей, концентрации сераорганического соединения,в сырье и общего давления на кинетику гидрогенолиза в присутствии промышленного катализатора платформинга АП-56. Опыты проводились на установке проточного тина под давлением водорода при постоянном молярном соотношении водород углеводород, равном 5 1. [c.111]

    На первой стадии происходит либо прямой перенос электронов от электрода к данному органическому соединению, либо образование сольватированных электронов, либо разряд атомов водорода у поверхности электрода. Какой именно будет первая стадия и что последует дальше — это зависит, очевидно, от ряда факторов. Важную роль играет природа растворителя — применяются и водные, и безводные, и смешанные растворители. Растворитель не только влияет на первую стадию, но и изменяет состав адсорбированного слоя на поверхности электрода и вступает в химическую реакцию с образованием неустойчивого промежуточного продукта. Электрод может оказывать влияние на реакцию благодаря своей каталитической активности, а также адсорбционной способности по отношению к различным атомам и молекулам, имеющимся в растворе. Очень важное значение имеет также его водородное перенапряжение если рассматриваемое соединение восстанавливается с трудом, то на металлическом электроде с низким перенапряжением будет выделяться водород и лишь электрод с высоким перенапряжением будет обеспечивать подвод энергии, необходимой для восстановления. Образование продукта реакции зависит также от таких факторов, как концентрация органического соединения, плотность тока, скорость перемешивания, температура, наличие в электролите кислотных, щелочных или других катализаторов, например солей титана или церия. [c.243]

    Применение метода кривых заряжения позволило показать влияние природы растворителя и строения двойного электрического слоя на энергию связи водорода с поверхностью катализатора и количество адсорбированного водорода. Так, для 0,1 н. растворов НВг, НС1, H2SO4 и КОН водородная область заканчивается при потенциале 0,20 0,25 0,35 и 0,41 В соответственно. Таким образом, энергия связи водорода с поверхностью катализатора уменьшается в ряду K0H>H2S04>H li>HBr и, следовательно, зависит от природы электролита и состава двойного электрического слоя. В частности, для платины присутствие катионов во внешней обкладке двойного слоя увеличивает энергию связи водорода, а присутствие анионов — уменьшает. [c.191]

    Замещение водородных атомов в ионе боргпдрида алк-оксигрупцами оказывает большое влияние на восстановительные свойства (Brown et al., 1956). Восстановительные свойства зависят от природы алкоксигруппы, числа замещенных атомов водорода и природы растворителя. Триметоксиборгидрид натрия получается при реакции гидрида натрия с триметилборатом в тетрагидрофуране  [c.167]

    Особенностью этой схемы является обязательное наличие двух атомов палладия в активном комплексе Рс1(П) взаимодействует с олефином, облегчая перенос водорода, а Рс1(0) взаимодействует с водородом. Эта схема согласуется с ингибирующим действием окислителей (например, СыгСЬ), но оставляет широкое поле для гипотез о влиянии на скорость изомеризации предварительной обработки Рс1С12 и природы растворителей. [c.127]

    Скорость реакции гидрогеиолиза, так же, как и скорость гидрирования глюкозы, увеличивается с ростом давления водорода до определенного предела. Влияние давления водорода сводится к увеличению концентрации водорода в жидкой фазе и, в конечном счете, на поверхности катализатора. Величина предела давления, после которого скорость реакции перестает расти, зависит от природы и концентрации гидрируемого соединения, природы и количества катализатора, природы растворителя, температуры процесса и ингенсивности перемещивания [44]. [c.84]

    Современная теория электрохимической кристаллизации дает возможность объяснить влияние природы металла, типа разряжающихся ионов и характера их электронных структур, состава раствора и наличия в нем поверхностно-активных веществ, пассивационных явлений, заряда поверхности, стадийности и числа присоединяемых электронов, водорода, природы растворителя, параметров электролиза (плотность тока, температура и т. п.) и других факторов на величину перенапряжения при выделении металлов х]м. В свою очередь, именно величина т]м определяет соотношение скоростей образования центров кристаллизации и их роста, что сказывается на мелкокристалличности получаемых осадков и равномерности их распределения по основе. [c.141]

    На течение и ход гомогенных химических реакций большое влияние оказывает среда (опыт 36). При этом природа растворителя может значительно влиять на скорость реакций растворенных веществ, поскольку растворитель зачастую не только сам принимает активное участие в реакции, но и в ряде случаев оказывает каталитическое действие на протекающий химический процесс. Не меньщее влияние на скорость реакций в водных средах может оказывать наличие в воде ионов водорода и гидроксила (кислотность и щелочность среды). [c.85]

    Все положения в бензольном ядре неравноценны, что позволило выявить влияние тяжёлого атома S в гетероциклической части бициклической молекулы на возможность и эффективность фотоиндуцированного внутримолекулярного переноса водорода, а также на спектрально-кинетические характеристики образующихся аци-нитрокислот или их анионов в зависимости от природы растворителя. [c.59]

    Адсорбционные исследования термодинамических закономерностей процессов адсорбции водорода на поверхности скелетного и пористого никеля из бинарных растворителей диметилформамид-вода, метанол-вода различного состава и тех же растворителей с добавками гидроксида натрия показали, что природа растворителя не оказывает влияния на число индивидуальных форм водорода, связанных поверхностью катализатора. Однако, под влиянием природы и состава растворителя изменяются количественные соотношения между величинами адсорбции индивидуальных адсорбционных форм. Так, введение в воду алифатических спиртов повышает величины адсорбции слабосвязанных молекулярных, а апротонного ди-метилформамида - стабилизирует на поверхности катализатора прочносвя-занные атомарные формы адсорбированного водорода. Добавки гидрок-сида натрия в целом повышали долю прочносвязанных атомарных форм, хотя при низких концентрациях щелочи на поверхности катализатора возрастали количества молекулярно адсорбированного водорода. Доказано существенное влияние специфических сольватационньгх взаимодействий растворителя с активными центрами поверхности скелетного никеля на характер энергетического распределения адсорбированного водорода. [c.137]

    Если ацилирующими агентами являются хлорангидриды замещенных кислот, то природу Ы-ацильных производных фентиазина, очевидно, определяет природа растворителя [3531. С хлорангидридом фенилуксусной кислоты или с хлорацетилхлоридом в бензольном или диоксановом растворе получаются замещенные Ы-ацетильные производные. В кипящей ледяной уксусной кислоте любой хлорид дает М-ацетилфентиазин. Предполагается, что при взаимодействии хлорангидридов кислот с растворителем образуются смешанные ангидриды КСНаОСООСНз (К=С1 или СвНз). Последние затем под влиянием выделяющегося хлористого водорода разлагаются с образованием хлористого ацетила. Ароилхлориды, однако, ацилируют фентиазин в уксусной кислоте нормально. [c.573]

    По мнению авторов [11, 26], основной причиной роста скорости гидрогенизации азогруппы в кислых средах является увеличение доли молекулярных форм водорода, наиболее активных в реакциях гидрогенизации ненасыщенных двойных связей [7, 29]. В водных растворах алифатических спиртов с добавкой уксусной кислоты, в которых скорости превращения азогруппы резко возрастают, достигается высокая селективность гидрогенизации 2-нитро-2 -гидроксиазобензолов по 2-нитро-2 -гидроксигидразобензолам, а в присутствии добавок гидроксида натрия концентрации данного промежуточного продукта падают более чем в 10 раз. В растворителях с оптимальной концентрацией гидроксида натрия скорости гидрогенизации нитро- и азогруппы в индивидуальных соединениях становятся близкими и вклад направления, приводящего к образованию К-оксида замещенного 2Н-бензотриазола, резко возрастает, что сопровождается ростом селективности реакции. Установленный экспериментально характер изменения наблюдаемых скоростей гидрогенизации нитро- и азогрупп в индивидуальных соединениях под влиянием природы и состава растворителя хорошо согласуется с изменением скоростей превращений нитро- и азогрупп в молекулах замещенных 2-нитро-2 -гидроксиазобензолов. [c.370]

    Таким образом, результаты проведенных исследований влияния природы и состава растворителя на кинетические закономерности гидрогенизации замещенных нитро-, азо- и 2-нитро-2 -гидроксиазобензолов свидетельствуют о том, что скорость и селективность реакций определяется количественными соотношениями скоростей гомогенных и гетерогенно-каталитичес-ких стадий схем химических превращений. Сопоставляя полученные данные с результатами проведенных нами адсорбцион-но-калориметрических исследований [32-34], можно сделать вывод о том, что изменение величин адсорбции водорода на активной поверхности ката.тизатора в результате количественного перераспределения индивидуальных форм адсорбата под действием растворителя будет приводить к изменению скоростей каталитических стадий реакции и оказывать влияние на ее селективность. В частности, в растворителях алифатический снирт-вода с добавкой гидроксида натрия реализуются оптимальные соотношения поверхностных концентраций форм водорода, что и приводит к росту селективности реакции по заме-щенным 2Н-бензотриазолам. Данное положение служит основой для разработки научно обоснованных методов подбора оптимальных каталитических систем для реакций жидкофазной гидрогенизации. [c.372]

    В 50—60-х годах изучение влияния стереохимического (особенно конформационного) строения органических молекул на их реакционную способность продолжало оставаться одной из важных задач кинетики органических реакций. Уже в 1953 г. А. Н. Несмеяновым и О. А. Реутовым [298] были начаты исследования стереохимии электрофильного замещения у насыщенного углеродного атома на примере реакции ртутьорганических соединений с солями ртути. Д. Крам [299], изучая стереохимию электрофильного замещения углеродного атома на водород, показал, что течение реакции довольно значительно зависит от природы растворителя в слабо ионизирующих растворителях сохранилась конфигурация у углеродного атома (S 1), а в среде сильно ионизирующих растворителей (сильные электрофильные реагенты) наб.чюдается главным образом обращение конфигурации — механизм [c.122]

    В первой статье по межфазному катализу Старкс [7] показал, что в октаноне-2 легко происходит обмен под действием 5%-ного раствора ЫаОО в тяжелой воде. Также сообщалось [52], что бисульфат тетрабутиламмония катализирует обмен дейтерий — водород в некоторых тиазолах. Систематическое изучение реакции показало, что на ее скорость оказывают влияние температура и концентрация катализатора положение равновесия зависит от характера заместителя в гетероцикле. Однако в общем случае скорости реакции большие и процент обмена высокий. В одной из работ, посвященных реакциям изотопного обмена солей сульфония в межфазных условиях, установлено, что на скорость реакции оказывают влияние как природа растворителя и мицеллярные эффекты, так и стабильность образующихся карбанионов [53]. [c.169]

    Длительное время считалось, что природа растворителя не влияет на константу скорости роста кр при радикальной полимеризации и сополимеризации. В последние годы, однако, появились данные о влиянии растворителя на скорость сополимеризации [347—349]. По мнению авторов работы [348], влияние растворителя проявляется в основном во взаимодействии растущих полимерных радикалов с молекулами растворителя. Растущая полимерная цепь может отрывать атом водорода от молекулы растворителя, давая неактивный полимер и свободный радикал. Если радикал растворителя достаточно активен, чтобы реинициировать полимеризацию, не происходит уменьшения общей скорости процесса. Если, однако, образуется малоактивный радикал, а мономер сравнительно малоактивен, он реагирует с другими активными радикалами, что приводит к обрыву полимерных цепей и снижает скорость полимеризации. Сказанное иллюстрируется следующей схемой  [c.188]

    Другим примером образования соединений с растворителем и влияния этих соединений на электролитическую диссоциацию могут служить замещенные аммониевые соли типа НзМНХ будучи сильн13 11и электролитами в гидроксилсодержащих растворителях, например в воде и спиртах, они в то же время лишь слабо диссоциированы в нитробензоле, нитрометане, ацетоне и ацетонитриле. Повидимому, в этих солях атом водорода может служить связующим звеном между атомом азота и кислотным остатком X так что в кислом растворе существует молекула КзМ-Н-Х. Если же природа растворителя 5 такова, что его молекулы стремятся образовать прочную связь с водородом, они могут вытеснить ионы X"  [c.40]

    Скорость рацемизации обычно возрастает с увеличением времени и с повышением температуры образования ангидрида, но наиболее важным фактором является природа растворителя. Рацемизация уменьшается в неполярных растворителях и в отсутствие основания [5]. В случае а-ациламиноацилалкилкарбо-натов тетрагидрофуран и толуол особенно хорошие растворители с точки зрения уменьшения скорости рацемизации, тогда как хлороформ [40] и диметилформамид [41] в этом отношении плохие растворители. Хлороформ и диметилформамид смогут растворять хлористоводородную соль триэтиламина, образующуюся при получении ангидрида, и эта соль может оказывать влияние на скорость рацемизации. Если это предположение правильно, то хлористоводородная соль трибутнламина, которая растворима во многих органических растворителях, должна увеличивать скорость рацемизации при применении бензола в качестве растворителя. Если хлористоводородная соль триэтиламина — главный фактор, вызывающий рацемизацию, то может оказаться выгодным брать другой третичный амин или применять иной метод для удаления хлористого водорода из реакционной смеси. Вместо хлористоводородной соли можно [c.181]


Смотреть страницы где упоминается термин Водород влияние природы растворителя: [c.191]    [c.169]    [c.89]    [c.62]    [c.62]    [c.181]    [c.52]    [c.484]    [c.149]    [c.361]    [c.150]    [c.394]    [c.45]    [c.52]   
Очистка технологических газов (1977) -- [ c.31 ]




ПОИСК







© 2025 chem21.info Реклама на сайте