Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Этиленгликоль как растворитель хроматографии

    Газовая хроматография. Это быстрый и, вероятно, лучший метод определения констант устойчивости комплексов, в состав которых входят летучие лиганды, например олефины. Проба, содержащая лиганд, вводится в колонку газового хроматографа и элюируется инертным газом-носителем [103]. Колонку обычно заполняют соответствующим твердым сорбентом-носителем, на поверхность которого нанесена неподвижная жидкая фаза, представляющая собой раствор соли металла в воде [104] или в таком растворителе, например этиленгликоле [105], в который можно вводить инертный фоновый электролит для контроля коэффициентов активности. Коэффициент распределения ли- [c.162]


    На основе адсорбционной ТСХ удалось разделить ПС в системах, состоящих только из растворителей для этого полимера, обладающих различной адсорбционной активностью по отношению к силикагелю. На рис. УИ1.5 показано разделение ПС в системе циклогексан — бензол. Видно хорошее разделение полимеров с низкой и средней молекулярными массами и отсутствие эффективной хроматографии ПС с М 5>4-10 , что, безусловно, связано с малой скоростью адсорбционно-десорбционных процессов у высокомолекулярных полимеров в этих системах. Аналогичные результаты по разделению ПЭО по молекулярной массе получены с помощью адсорбционной ТСХ в системах пиридин — вода [11] и этиленгликоль — метанол на силикагеле и метанол — диметилформамид на окиси алюминия [41]. [c.289]

    Так, для изобутилена и бутена-1, которые трудно разделить на большинстве неподвижных жидких фаз, применяемых в газожидкостной хроматографии, был использован хромато-распределительный метод. Распределение проводилось в системе жидкость—пар при 20° С, в качестве растворителя был использован этиленгликоль, в котором растворялось азотнокислое серебро (концентрация 2,06 моль л). Коэффициенты распределения изобутилена и бутена-1 в этой системе равны соответственно 13,5 и 29,9 для расчета можно использовать и относительные величины. [c.103]

    На основе характеристик удерживания, полученных на колонке с комплексообразующей неподвижной фазой, может быть рассчитана константа стабильности комплекса сорбата с фазой [164—168]. Так, весьма распространенной в газовой хроматографии является система, включающая в качестве неподвижной фазы раствор нитрата серебра в этиленгликоле или другом полярном растворителе, а в качестве сорбатов — непредельные углеводороды [164—167]. Если/ р — коэффициент распределения углеводорода между чистым растворителем и газом, — концентрация комплексообразователя (нитрата серебра), то коэффициент рас- [c.67]

    ОПРЕДЕЛЕНИЕ Н-БУТАНОЛА И ЭТИЛЕНГЛИКОЛЯ В ВОЗВРАТНОМ РАСТВОРИТЕЛЕ МЕТОДОМ ГАЗОЖИДКОСТНОЙ ХРОМАТОГРАФИИ [c.238]

    Обычные методики бумажной хроматографии неприменимы к пероксидным соединениям. На необработанной бумаге можно определить лишь присутствие или отсутствие пероксида водорода в смеси, поскольку органические пероксидные соединения всех видов не разделяются и уносятся растворителями [ 1 . Для разделения пероксидных производных используют бумагу, обработанную этиленгликолем, силиконовым маслом [2], или ацетилированную бумагу [З, 4]. [c.117]

    Исторически, с учетом фазовой нестабильности концентрированных растворов и парогазовых смесей формальдегида, подавляющее большинство аналитических операций производится с водными или водно-метанольными растворами невысоких концентраций (не более 25—30% СНгО). Даже если в подлежащей анализу пробе формальдегид находится в каком-либо ином состоянии, при подготовке к определению на ее основе приготовляют такой, удобный для хранения и манипулирования раствор. Так, при анализе параформа или триоксана их подвергают гидролизу в кислой среде, после чего определяют количество выделившегося формальдегида. Высококонцентрированный газообразный или жидкий формальдегид отбирают в воду или абсолютированный метанол. В случае, если в исходной смеси, кроме формальдегида, требуется найти содержание воды или метанола, в качестве растворителя применяют абсолютированный этанол, этиленгликоль и т. д. В отдельных случаях анализируют непосредственно нестабильный газ или жидкость. При этом, очевидно, необходимо исключить возможность соприкосновения пробы с охлаждаемой поверхностью или воздухом. При непосредственном отборе высококонцентрированного газообразного формальдегида в хроматограф пользуются специальным обогреваемым краном — дозатором [260]. Иногда пробу нестабильной смеси отбирают в отвешенное количество поглотительного раствора, например гидроксиламина, быстро реагирующего как с растворенным формальдегидом, так и с образовавшимся полимером. Для анализа нерастворимых в воде и других растворителях высокополимерных форм применяют специальные методики 21]. [c.116]


    В качестве экстрагентов аренов в промышленности применяются диэтиленгликоль [35], три- и тетраэтиленгликоль [36], сульфолан 37], смеси Л -метилпирролидона [38] и Л -метилкаи-ролактама ]39] с этиленгликолем, УУ-формилморфолин [40], ди-метилсульфоксид [41], Л ,Л -диметилформамид 42]. В ряде работ с использованием метода газожидкостной хроматографии проведено сравнение селективности этих растворителей [43—45]. [c.57]

    Биологическая активность фермента в ходе хроматографии может измениться (как уменьшиться, так иногда в возрасти) в силу ряда дополнительных причин. Например, кажущееся увеличение активности фермента может быть результатом его отделения от протеаз. Снизиться активность может как в результате истинной денатурации илп окисления 8Н-групп белка, так и при отделении апофермепта от кофакторов. Иногда инактивация обусловлена разъединением двух или нескольких последовательно работающих ферментов. Такого рода кажущиеся инактивации могут быть обнаружены при объединении хроматографических фракций, когда активность фермента восстанавливается. Для сохранения биологической активности липофильных белков мембран в элюент иногда приходится добавлять спирт или ацетон. При этом может возникнуть определенная неравномерность распределения органического растворителя между жидкостью внутри и снаружи гранул — ионы сорбента, гидратируясь, оттягивают на себя воду. Следствие этой неравномерности — наложение на ионный обмен эффекта распределетельной хроматографии. Для сохранения биологической активности ферментов в элюент часто добавляют глицерин (до 25%) или этиленгликоль (до 5%). [c.292]

    В последнее время в литературе появились работы иностранных авторов по отделению урана от различных элементов методом распределительной хроматографии на силикагеле. Хефнер и Хультгрен [565] разработали метод отделения урана от плутония, используя для этой цели либо дибутиловый эфир этиленгликоля, либо смесь его с керосином, В обоих случаях растворитель содержал азотную кислоту. [c.336]

    В тех случаях, когда это возможно, первая стадия включает солюбилизацию в водном илн апротонном растворителе, например в этиленгликоле или диметилсульфоксиде эту операцию необходимо проводить с осторожностью, чтобы быть уверенным, что в условиях данного метода и при применении выбранного растворителя макромолекулы не модифицируются и не разрушаются. Лоэтому на данной стадии нельзя применять кислоты, основания или ферменты. Низкомолекулярные примеси легко удаляются диализом (разделение по размеру молекул), ионообменной хроматографией (разделение по заряду молекул) или гель-фильтрацией (разделение по размеру молекул) (см. разд. 26.3.2.6). Последние два метода широко применяются также для отделения макромолекулярных примесей. Макромолекулы выделяют из раствора [c.216]

    Неионогенные ПАВ можно легко проанализировать высокоэффективной гельпро-никающей хроматографией. Разделение с использованием в качестве подвижной фазы органических растворителей в большинстве случаев обеспечивает получение корректных значений молекулярных масс, но такое разрешение не позволяет разделять олигомеры алкиленоксида. Калибровку часто проводят но серии хорошо изученных поли (этиленгликолей). Для разделения применяются как нормально-фазовые, так и обращенно-фазовые режимы ВЭЖХ [70]. Для низкомолекулярных аддуктов этоксилатов алкилфенолов рекомендуется использовать колонки ЫСкгозогЬ (зарегистрированная торговая марка компании Мегск) и флуоресцентный детектор, в то время как для высокомолекулярных аддуктов успешно применяются колонки с носителем, содержащим аминогруппы с УФ-детектором [72]. Вероятно, наиболее простой способ для анализа этоксилатов алкилфенолов заключается в использовании колонок Jg или Ою1 в обращенно-фазовом режиме с УФ-детектированием. Было описано разделение, в котором градиент элюирования давал разрешение, позволяющее разделять олигомеры алкиленоксида вплоть до 50 молей ОЭ. [c.132]

    Во многих случаях гораздо более удобным и столь же эффективным является метод разделения фаз. Водный раствор неионогенного ПАВ (обычно приблизительно 20%-ный) помещают в делительную воронку,нагревают выше точки помутнения, дают отстояться до разделения фаз и удаляют водную фазу. Оставшуюся жидкость, обогащенную ПАВ, снова растворяют в воде и этот процесс повторяют несколько раз, воспроизводимую хроматограмму самого ПАВ, очень важно правильно выбрать проявляющий растворитель и регулировать температуру. Накагава и Наката [79 ] рекомендуют применять метод всплывающего слоя с использованием в качестве растворителя жидкости, образующейся при смешении и встряхивании н-бутанола, пиридина и воды (в объемном отношении 5 2 5). Эти авторы провели хроматографирование 26 типов продажных неионогенных ПАВ при 0° (в холодильнике). Следы ПАВ и сопровождающего их этиленгликоля становились видимыми после обработки модифицированным реактивом Драгендорфа и I2 — амилозы. В качестве примера установленной ими зависимости между Rf ж значениями ГОБ на рис. 73 приведены соответствующие кривые. Алифатические спирты нормального строения при длине цепи не более 14 углеродных атомов, а также MOHO-, ДИ-, три- и до тетраэтиленгликолей моншо определять с помощью газо-жидкостной хроматографии. Например на хроматограмме продажного полиоксиэтилендодецилового эфира имеется такой же пик, как и у додеканола [92]. Этот пик исчезает, если [c.190]


    Если целевой продукт представляет собой растворимый Метаболит или он синтезируется внутри клетки и не секретируется вовне, то прибегают к другим методам выделения экстр)акцни, сорбции, осаждению, хроматографии, выделению с помощью мембран. Экстракцию проводят органическими растворителями из клеток (твердая фаза), например, антибиотика гризеофульвина ацетоном, или бензилпенициллина при pH 2,0—3,0 — бутил-ацетатом из культуральной жидкости после отделения клеток продуцента (система "жидкость-жидкость"), или, наконец, экстракция ферментов (в частности, пуллуланазы) в двуфазных водных системах, например, глюкана-декстрана и несовместимого с ним поли-этиленгликоля (ПЭГ-6000). [c.388]

    В газовой хроматографии наиболее часто используют фазы, содержащие раствор соли серебра в органическом растворителе. Взаимодействие алкенов с ионом серебра было подробно изучено Лайни с сотр. [10]. Как следует из приведенных уравнений, К должно изменяться с изменением ионной силы раствора. Поэтому при проведении точных измерений в колонках сравнения в качестве НЖФ использовали растворы нереагирующей соли в той же самой нелетучей жидкости. Так, для колонок, содержащих растворы 0,25, 1,0, 2,3 М AgNOз в этиленгликоле, в качестве сравнительных применяли колонки, содержащие 0,25, 1,0, 2,3 М в этиленгликоле. Во избежание влияния адсорбционных эффектов использовали колонку, содержащую 40% НЖФ. Следует отметить, что увеличение содержания НЖФ до 40% не всегда позволяет пренебречь вкладом адсорбционных явлений в величины удерживания. [c.165]

    Большой интерес представляют работы В. А. Цендровской с соавторами [73]. Эти авторы разработали методы определения стирола в воздушной среде и водных вытяжках с помощью БХ и ТСХ. Для переведения стирола в менее летучее и устойчивое соединение использована также реакция взаимодействия с ацетатом ртути в среде этанола, подкисленного уксусной кислотой [74]. При анализе воздушной среды (на наличие стирола) реакция меркурирования происходит непосредственно в поглотительном растворе в процессе поглощения исследуемого воздуха. Способ предварительного меркурирования использован также для раздельного исследования кумарона. индена и дициклопентадиена в тонком слое окиси алюминия в системе растворителей хлороформ—гептан—этанол (8 3 1). Тем же автором использован метод ТСХ для определения этиленгликолей в воздухе. При этом пробы воздуха отбирают в микропоглотители, заполненные этанолом. Хроматографию проводят на пластинках с тонки.м слоем. Подвижная фаза — с.месь хлороформа с метанолом (9 1). [c.280]

    Считается, что сефароза устойчива в области pH 4—9 с ней не рекомендуется работать при температурах иже 0°С или выше 40 °С. Сефароза устойчива к действию концентрированных растворов солей или мочевины. Куатреказас [14] указывает,, что на частицы агарозы существенно не влияет продолжительное воздействие 6М раствора гуанидинхлорида или 7М раствора мочевины. Поэтому агарозные аффинные сорбенты можно отмывать от белков этими денатурирующими растворами. В течение 2—3 ч при комнатной температуре на агарозу не действуют 0,1М гидроксид натрия или 1М хлорная кислота. Ни 50%-ный (по объему) водный диметилформамид, ни 50%-ный (по объему) водный этиленгликоль не меняют структуру агарозы. Эти растворители полезны при аффинной хроматографии относительно плохо растворимых в воде соединений, например тироксина и стероидов. Аффинные сорбенты на основе сефарозы можно хранить при 4° С в виде водной суспензии с до бавкой антибактериального агента. Длительность хранения определяется лишь стабильностью связанного аффинного лиганда. Однако агарозные аффинные сорбенты полностью разрушаются при высушивании или замораживании. Согласно данным Аксена и Эрнбека )[3], эти сорбенты можно лиофилизовать, если добавить к ним декстран, глюкозу и сывороточный альбумин. Химическая стабильность биогеля А такая же, как у сефарозы. [c.16]

    Хотя фирмы выпускают силикагель возможно более узких фракций, все же товарный силикагель необходимо еще раз поделить на фракции посредством просеивания или седиментации, а затем, если необходимо, промыть разбавленным раствором гидроксида натрия, органическими растворителями, например хлороформом, метанолом, и водой и после этого высушить. Чтобы получить адсорбент с заданной активностью, надо добавить к сухому адсорбенту отмеренное количество дистиллированной воды. Можно проводить дезактивацию, добавляя такие спирты, как пропанол, этиленгликоль, глицерин, но чаще всего дезактивируют силикагель водой. Активность этого адсорбента обычно определяют с помощью азокрасителей [33] методика определения подробно описана в разд. 4.2.3. Соотношение между количеством введенной воды и полученной активностью адсорбента показано в табл. 4.4. В большинстве случаев для хроматографирования пригоден адсорбент, содержащий 10—12% воды. Если же содержание воды превышает 16%, то разделение идет по механизму, характерному для распределительной хроматографии (ЖЖХ). Далее мы обсудим способы приготовления силикагеля, его разделения на фракции, дезактивации, регенерации, а также пропитки нитратом серебра. [c.162]

    НОЛ—буферный раствор (1 3 1), на целлюлозе со смссью -бутанол—уксусная кислота—10 %-ный раствор хлорида натрия (4 1 1) и на силикагеле или оксиде алюминия со смесью метилэтилкетон—диэтиламин—25 %-ный раствор аммиака (3 1 1). Тайдель и Шмитц [98] разделили 16 оптических осветлителей, применяя слои полиамида и смеси метанол—вода—аммиак (10 1 4) и метанол—6 н. соляная кислота (10 2), а также силикагель О и смеси н-гексанол—пиридин—этилацетат—аммиак—метанол (5 5 5 5 3) и бензол—хлороформ (2 3). Экстракция красителей проводилась следующими растворителями этиленгликоль—аммиак (7 3) и пиридин—вода (1 1). Авторы [98] дали таблицу величин Rf, включая Rf цис- и транс-изомеров. Фигге [99] классифицировал 18 оптических осветлителей в соответствии с их растворимостью в различных растворителях. Неионные осветлители отделяли от ионных хроматографией на силикагеле с применением щелочных полярных растворителей. Далее каждую группу разделяли на индивидуальные соединения методом одно- или двумерной ТСХ. В статье указаны 19 составных растворителей. [c.26]

    Обруба [224] методом тонкослойной хроматографии на силикагеле определял свободные полиэтиленгликоли в неионных аддуктах оксида этилена. Он использовал три системы растворителей этанол—метанол—гидроксид аммония (12 3 2 и 12 4 2) и этанол—метанол—вода (12 4 2). Пятна опрыскивали реактивом Драгендорфа, а этиленгликоль обнаруживали путем опрыскивания раствором нитрата серебра. Для разделения поверхностно-активных сложных эфиров и сложных эфиров полиэтиленгликоля Тома и др. [225] комбинировали методы двумерного и непрерывного хроматографирования. После нисходящей хроматографии в первом направлении смесью н-бутанол—этанол—25 %-ный аммиак проводили непрерывное хроматографирование в BN-камере (системы Desaga) во втором направлении. Элюирующим растворителем во втором направлении служила насыщенная метилэтилкетоном вода или смесь хлороформ—метанол—вода (3 25 12). В качестве примерной характеристики разделения этим методом можно указать на то, что пробу стеарата полиэтиленгликоля-900 удалось разделить на 17 отдельных пятен при элюировании во втором направлении смесью, содержащей н-бутанол. При разделении смесей различных стеаратов полиэтиленгликоля с хлороформом как растворителем для второго направления были получены стеараты полиэтиленгликоля с обозначениями 400, 900, 2000 и 4700. Опыты проводили на слоях силикагеля при длине пути [c.468]

    Для фракционирования полиэтилентерефталата использовали [2096] гель-проникающую хроматографию в смеси нитробензола с тетрахлорэтаном в качестве растворителя. Методом гель-проникающей хроматографии определяли [2097] также олигомерный состав полимеризационной смеси терефталевой кислоты и этиленгликоля. [c.425]


Смотреть страницы где упоминается термин Этиленгликоль как растворитель хроматографии: [c.275]    [c.222]    [c.313]    [c.451]    [c.12]   
Хроматография полимеров (1978) -- [ c.77 ]




ПОИСК





Смотрите так же термины и статьи:

Ахунов, А. Н. Кузьмина, Ф. А. Мамина. Определение к-бутанола и этиленгликоля в возвратном растворителе методом газо-жидкостной хроматографии

Хроматографы растворитель

Этиленгликоль

Этиленгликоль как растворитель



© 2025 chem21.info Реклама на сайте