Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Уран, определение бора

    Чувствительность определения бора в уране методом испарения равна 7 10 %. Точность анализа составляет 10—15% от определяемой концентрации. На рис. 61 приведен градуировочный график для определения бора в уране. [c.364]

Рис. 61. Градуировочный график для определения бора в уране. Рис. 61. <a href="/info/10311">Градуировочный график</a> для <a href="/info/157583">определения бора</a> в уране.

    ОПРЕДЕЛЕНИЕ БОРА В БЕРИЛЛИИ, ЦИРКОНИИ, ТОРИИ И УРАНЕ [24] [c.431]

    Определение бора в уране. Перед взятием навески стружку или кусочки анализируемого металла травят 8 М азотной кислотой, промывают водой и этиловым спиртом и высушивают. Далее поступают, как при определении бора в тории, но в поглотительную колбу добавляют 40 мл метанола. После получения 60 мл дистиллята [c.433]

    В результате подробного исследования методов определения малых количеств бора (0,0005—0,02%) в углероде и низколегированных сталях [16 ] рекомендован ионообменный метод, который признан лучшим, чем методы, основанные на осаждении, электролизе или отгонке метилового эфира борной кислоты. В частности, ванадий не удаляется при электролизе с ртутным катодом, но эффективно поглощается катионитом в Н-форме. Борная кислота определяется в вытекающем растворе с помощью диантримида. Описаны также аналогичные методы определения малых количеств бора в окиси урана [46 ] и сплавах на основе алюминия [209]. В сочетании с ионообменным методом могут применяться и другие цветные реагенты, хотя и менее эффективные, чем диантримид куркумин [211 ] (для определения бора в уране и графите), хинализарин [215] и карминовая кислота [26] (для определения бора в титановых сплавах). [c.258]

    При выборе реактива следует помнить, что нет универсального способа, который можно было бы рекомендовать для всех многочисленных случаев определения микроколичеств бора. В каждом конкретном случае выявляются преимущества того или иного реактива. Так, при экстракционно-фотометрическом определении бора в тетрафториде урана авторы работы [113] рекомендуют применять метиленовый голубой, несмотря на то, что при определении бора в окиси бериллия лучшие результаты эти же авторы получили с бриллиантовым зеленым [114]. В данном конкретном случае это связано с тем, что в условиях экстрагирования тетрафторобората бриллиантового зеленого (pH 4) уран гидролизуется и мешает экстракции. [c.50]

    Здесь решающую роль играет назначение метода и практическая ценность получае.мых результатов. Например, при определении цинка и латуни относительная ошибка в 10%, несомненно, позволяет отнести метод к полуколичественным, а определение бора в уране при его кон- центрации в 1 10 %, с относительной ошибкой в 25% будет ц. Зависимость величины считаться количественным резуль- относительной ошибки от концен-татом. Вместе с тем абсолютная трации. ошибка определения ци нка в латуни, равная 0,01%, свидетельствует об очень точном количественном анализе, а такая же абсолютная ошибка в определении бора просто лишает анализ урана всякого практического смысла. [c.69]


    Часто в основу одновременно вводится несколько элементов, чтобы использовать эталоны для построения группы градуировочных графиков, необходимых для определения ряда примесей. В этих случаях требования к чистоте применяемых реактивов часто приходится повышать. Это очевидно из рассмотрения следующего примера предположим, что анализируется уран, содержание бора в котором лежит вблизи 10 %, а натрия — вблизи 10 2%. Для анализа применяется одна серия эталонов, причем, очевидно, в эталон с самым низким содержанием примесей следует ввести 10 3% На и Ю % В. Если натрий, употребляемый для эталонирования, содержит 0,5% В, то при введении в пробу в есте с тем введем, как это [c.87]

    Определение бора в уране [c.378]

    Анализу урана методом испарения посвящена уже упоминавшаяся работа в которой был впервые разработан чувствительный и достаточно надежный метод определения бора и некоторых других примесей в уране. [c.391]

    Прямое определение Sb в сочетании с рядом других элементов производится в самых разнообразных материалах, в том числе в алюминии [54, 55, 1134, бериллии и его соединениях [305, 1297], боре [778, 11171 и фосфиде бора [26], ванадии и его окислах [234, 491, 1117], висмуте [809, 909, 1134], вольфраме и его соединениях [195, 739, 795, 1265], вольфрамовых рудах [1480], германии и его соединениях [559, 634, 905], горных породах [386, 730, 1182, 1240, 1336, 1443, 1599], графите и углероде [235, 397, 612], жаропрочных и тугоплавких сплавах [176, 177, 379, 1278, 1593], железе [425, 1134, 14411, железных рудах и минералах [198, 386, 636, 971, 1336], сталях [176, 546, 1278, 1441, 1593] и чугуне [61, 274, 546, 1250], золоте [404, 754, 909, 1095] и его сплавах [196, 389,390, 1167], индии [1168, 1308] и сплавах на его основе [814, 815, 1267], иттрии и его окислах [234, 272], алюмоиттриевом гранате [82], кадмии [598, 599, 1134] и кадмиевых сплавах [819], кобальте [60, 153, 1134], кремнии [252, 1619], кварце [154], карбиде кремния 109, 110, 288, 789, 790, 1353], кремниево-медных сплавах 594], силикатах [1586], технических стеклах [612, 1579], меди 129, 482, 964, 997, 1176, 1599, 1609, 1645, 1654], медных сплавах 96, 482, 1048, 1188, 1457,1463, 1566], окиси меди [199], продуктах медеплавильного производства [3601 и медных электролитах [1298, 1600], молибдене и его соединениях [104, 237, 308, 795, 1325, 1347, 1443], мышьяке [472, 1134], никеле и никелевых сплавах [486], ниобии и его окислах [49, 972], олове [582, 744, 782, 812, 900, 1684] и его сплавах [1210, 1494, 1495], полупроводниковых материалах [668, 678, 806, 1298, 16841, припоях [210, 1101], свинце [481, 534, 908, 1154, 1155,1193, 1543,1655], свинцовых сплавах [126, 871], рудах [53, 667, 806, 1143] и пылях [811], РЗЭ и их окислах [234, 353], селене [154, 155, 499, 747, 818, 1134], селениде ртути [715], сере [189, 1134], серебре [388, 390, 391, 909, 1598], хло- иде серебра [1362], стеклоуглероде [397], сульфидных рудах 638], тантале [237], теллуре [156, 591, 592, 1134, 1613], теллуровом баббите [1656] и теллуриде свинца [342], типографских сплавах [323], титане и двуокиси титана [288, 306, 1262], тории и его окислах [272], уране [1447], окислах урана [878, 1182, 1240] и урановых рудах [1443], ферросплавах [792, 793], фосфоритах [879], хроме [555, 729, 792] и его окислах [54, 55, 571], цинке [976] и цинковых рудах и минералах [1142], цирконии [679] и двуокиси циркония [1368], производственных растворах [205, 882, 1290, 1323, 1324, 1483], сточных и природных водах [429], азотной, серной, соляной, уксусной, фтористоводородной и бромистоводородной кислотах [111, 121, 407, 552, 574, 10081, воздушной пыли [121. [c.81]

    Чувствительность метода. Пламенные спектрофотометры, собранные на основе монохроматоров УМ-2 и СФ-4, оказались достаточно простыми и универсальными приборами, позволяющими определять большое число металлов. Однако при измерении малых концентраций возникают затруднения, вызванные фоном пламени [39.4]. Прежде всего, источником фона является само пламя, в котором возбуждаются радикалы и молекулы О2, СН, Сд. Нестабильность фона пламени существенно ограничивает чувствительность и точность метода. Фон пламени смеси ацетилен—воздух мешает определению элементов, линии которых находятся в области 4000—6000 А в красной же и инфракрасной области фон ничтожно мал. Кроме того, посторонние элементы, присутствующие в растворе, часто дают излучение, спектр которого состоит из молекулярных полос или является сплошным. К числу этих элементов относятся щелочноземельные и редкоземельные металлы, бор, алюминий, медь, фосфор, молибден, ниобий, уран, цинк, бериллий, ванадий, олово, теллур и титан. Следует заметить, что при недостаточной дисперсии прибора и широких входных щелях, излучение соседних линий может привести к завышенным результатам. Экспериментальное сравнение приборов с неподвижным спектром и со сканированием показало, что при сканировании величина фона значительно меньше влияет на точность измерений и на чувствительность метода. [c.304]

    Определение в присутствии урана. При необходимости отделить уран от алюминия, вместо нейтрализации аммиаком, крк указано выше (см. Определение в присутствии фосфора, мышьяка, ора и бора ), раствор нейтрализуют насыщенным раствором карбоната аммония, после чего прибавляют еще по 25 мл раствора карбоната на каждые 100 мл раствора и нагревают приблизительно до 50° С (избегая бурного выделения газов, вызываемого слишком быстрым нагреванием) Определение в присутствии элементов, образующих устойчивые комплексные цианиды (ж е-лезо, никель, кобальт, медь, молибден, хром ). Анализируемый раствор, содержащий свободную соляную и хлорную [c.573]


    После открытия изотопов химических элементов ученые считали, что изотопный состав каждого элемента одинаков для всех образцов. Это предположение было положено в основу определения атомных масс. Единственное исключение составляли элементы, имеющие долгоживущие радиоактивные изотопы. Однако за время, прошедшее после 1945 г., атомные массы некоторых элементов, таких как литий, бор и уран, под воздействием деятельности человека при определенных обстоятельствах изменились. Было сделано еще более важное фундаментальное открытие. Как было установлено, изотопный состав различных частей Солнечной системы не одинаков. Различия в изотопном составе были отмечены даже для кислорода — одного из самых распространенных элементов. В настоящее время вариации изотопного состава найдены для нескольких элементов. Они дают ключ к пониманию процессов возникновения химических элементов, а также условий зарождения Солнечной системы. [c.202]

    Этот метод был применен для определения кислорода в меди, боре, таллии, кремнии, германии, титане, мышьяке, сурьме, селене, теллуре, уране, иоде, висмуте, ванадии, хроме, ниобии, тантале, вольфраме и свинце. [c.823]

    Атомный вес индия (точнее, его эквивалент, который совпадал бы с его атомным весом лишь в случае формулы окиси ХнгО) сначала (в 1867—1868 гг.) принимался равным 37 [31а, с. 382]. Затем, к февралю 1869 г., был изменен до 1н = 36. Когда в день открытия (1 марта 1869 г.) Менделеев составлял свою верхнюю неполную табличку элементов, то он поставил 1п = 36 между магнием и цинком но тем соображениям, о которых сказано выше [22, с. 49]. В тот же день позднее он записал в списке атомных весов, предназначавшихся для написания карточек элементов, для индия сначала атомный вес 36, который затем был исправлен на 72, с учетом формулы его окиси 1пО [22, с. 67]. При раскладывании пасьянса (см. первую книгу, фотокопия I) индий фигурировал сначала с этим атомным весом (1п = 72) и ставился сначала в тот же ряд маГния и цинка, но уже не между магнием и цинком, а между цинком и кадмием( под знаком вопроса). Затем Менделеев снял индий отсюда и принял немного более высокий его эквивалент (37,8), соответствовавший более позднему определению Винклером (1867 г.). В этом случае Менделеев пытался поставить 1п = 75,6 в ряду трехатомных бора и алюминия, между хромом и ураном, опять же под знаком [c.56]

    Описаны абсорбциометрические методы определения тантала с метиловым фиолетовым — в рудах (для содержаний более 0,1%) [13, 227], металлическом цирконии, ниобии и гафнии [27] с родамином 6Ж и бутилродамином С — в рудах и горных породах [23, 24, 233, 234, 244] с кристаллическим фиолетовым — в тех же объектах [235, 236] с малахитовым зеленым — в железе, стали и металлическом ниобии [237], уране, цирконии и боре [239] флуориметрический метод с родамином 6Ж — в кремнии и его соединениях [79]. [c.148]

    В результате всех этих исследований разработаны методы определения в среднем 6—8 элементов-примесей в чистых веществах, используемых в реакторной и полупроводниковой технике (графит, уран, свинец, висмут, цирконий, бериллий, кремний, германий, галлий, мышьяк, арсенид галлия, индий, таллий, фосфор, сурьма, цинк и др.), а также в других чистых материалах (бор, молибден, ниобий, иттрий, европий, кадмий). Созданы методы активационного определения целого ряда примесей в 22 веществах высокой чистоты с чувствительностью 10 —10 °%. [c.5]

    Определение в присутствии урана. При необходимости отделить уран от алюминия, вместо нейтрализации аммиаком, как указано выше (см. Определение в присутствии фосфора, мышьяка, фтора и бора ), раствор нейтрализуют насыщенным раствором карбоната аммония, после чего прибавляют еще по 25л л раствора карбоната на каждые 100 мл раствора и нагревают приблизительно до 50° (избегая бурного выделения газов, вызываемого слишком быстрым нагреванием).  [c.524]

    В условиях описанного ниже хода анализа ванадий дает желто-коричневую окраску. Ее интенсивность составляет /500 от интенсивности окраски, обусловленной равным по весу количеством вольфрама. Количество ванадия в силикатных породах слишком мало, чтобы заметно влиять на определение вольфрама. Уран, ниобий, тантал, фосфор, бор и платина (из посуды) в небольших количествах не мешают определению. [c.800]

    Спектрофотометрическое определение бора принципиально не отличается от метода, применяемого для определения бора в уране [9]. Из слабокислого раствора образца отгоняют метил-борат. Бор определяют фотометрическим методом по зеакцив с куркумином. Ошибка определения составляет 3 отн.°/о при содержании 1 мкг бора. [c.382]

    При определении бора в материалах постоянного состава (сталь, металлический титан, цирконий, уран, окись бериллия) зависимость коэффициента экстракции бора от концентрации основного компонента пробы в растворе может быть элиминирована. Для этого при построении градуировочного графика в растворы вводят заданные количества соответствующего элемента, а при выполнении анализа сохраняют концентрацию этого элемента, принятую при построении калибровочной кривой. Этот прием не может быть применен при анализе многокомпонентных проб переменного состава (руд и других проб минерального сырья) здесь приходится выбирать величину навески и разведение таким образом, чтобы изменения К , обусловленные различиями в составе проб, не превышали допустимые пределы. Это условие, а также малые значения констант распределения фторборатов красителей ограничивают чувствительность определения бора в таких пробах. При очень малых значениях Яр фторбората красителя (например, определение кристаллическим или метиловым фиолетовым) создается парадоксальное положение, когда мероприятия, направленные на понижение порога чувствительности определения gмип, приводят к возрастанию порога чувствительности анализа Х ин и наоборот. Действительно, значение мин (во всяком случае его инструментальная составляющая) уменьшается с ростом Кд бора при значениях А р, равных 0,1—0,2, К , резко возрастает с уменьшением отношения в/Гэ. Но объем экстрагента не должен превышать емкость самой большой (/ = 5 см) кюветы фотоколориметра, равную обычно 25 мл (больший Уд не может быть полностью использован при измерении), а уменьшение объема водной фазы посредством концентрирования раствора навески приводит к понижению Кд вследствие солевого эффекта [мешающее влияние типа (вд)]. В конечном счете оказывается выгодным пойти на уменьшение Кд и возрастание ё мин но использовать большую эффективную навеску. Это положение иллюстрируется данными табл. 32 значение ин в условиях опыта 6 Ув1Уа = 1) приблизительно в 3 раза выше, чем в условиях опыта 5 ( в/ э = 0,2), однако объем аликвоты водной фазы, отобранной для определения (а следовательно, и содержащаяся в ней часть навески пробы), в первом случае в 10 раз выше, чем во втором, что обеспечивает уменьшение Х ин более чем в три раза [112, 35]. [c.124]

    Имеется много примеров применения экстракции для выделения следов элементов при концентрациях порядка 10 —10" %. При анализе кадмия высокой чистоты Т1 при содержании порядка 10" % экстрагировали эфиром из 8 М НС1 и затем определяли полярографически [76]. До 10" % таллия и железа в индии определяли полярографически после экстрагирования примесей диизопропиловым эфиром из 6 М НС1 [77]. В очищенном зонной плавкой алюминии определяли спектрофотометрически 5-10 % железа после экстракции метилизобутилкетоном из слабокислого концентрированного раствора хлорида алюминия [78]. Примесь золота в меди (менее 10" %) отделяли экстракцией этилацетатом из раствора, содержащего азотную и соляную кислоты, и затем определяли спектрофотометрически [79]. Экстракцию бора раствором хлорида тетрафениларсония в хлороформе применяли при эмиссионном спектральном определении бора в уране [80]. Нижний предел определения 5-10" %. [c.98]

    Куркуминовый метод благодаря исключительно высокой чувствительности пригоден для определения очень малых количеств бора. Работы по применению куркуминового метода включают определение бора в кремнии ]2, 41—44], хлорсиланах [26, 41, 45], германии [2], уране [35, 46, 47], цирконии и его сплавах [35, 48—50], гафнии и титане 150], никеле [51, 52], стали [5, 35, 53], металлическом натрии [13], бериллии и магнии [35], силикатах ]54], фосфатах [55], почве [56], растительных материалах [32, 56], химических реагентах [57, 58] и морской воде [59]. [c.119]

    Карминовый метод определения бора применяют, как правило, при относительно высоком содержании бора в различных материалах куркуми-новым методом определяют меньшие его количества. Карминовым методом определяют бор в стали [69], молибденовых сплавах [66], цирконии и его сплавах [68], титане и его сплавах [17, 70], сплавах кобальта н никеля [70], сплавах урана с алюминием [71], нитрате уранила [72, 73], кремнии [74], стекле ]4, 75], искусственных удобрениях [19, 76], фторидах ]12, 77], почвах и растениях J65], водах [65], углеродных [78] и биологических материалах [79]. [c.121]

    Определение в титане, цирконии, тории, тантале, уране и боре Е. Booth, [c.664]

    Метод хроматографии иа бумаге используют для предварительного отделения марганца от урана при анализе последнего [771, 1299, 1гОО]. Так, при определении марганца и других примесей (Ср, Ni, Со, Си, d, Mo, Fe, Na и Au) в уране, используемом в реакторах [13001, производят отделение урана на бумаге Шлейхер — Шюлль 20 43А с помощью безводного диэтилового эфира, содержащего 5 объемн.% HNOg. Участок хроматограммы, содержащий примеси, затем облучают и производят дальнейшее разделение прпмесей с помощью бумажной хроматографии восходящим способом, используя смесь этанола, НС1 и HjO (75 20 5). Активность измеряют на у-спектрометре с кристаллом NaJ(Tl) и 128-канальном анализаторе импульсов. Аналогичный метод используют при анализе горных пород [911, 912], В активационном анализе очень часто применяют метод экстракции как самый простой и быстрый метод выделения и отделения элементов. С помощью метода экстракции произведено, например, отделение и очистка Мп с последующим у-спектрометрическим определением его в алюминии, сталях [835], уране [1205], биологических объектах [182, 649, 904, 1306], нефти [904], органических материалах [1451], трихлорметил-силане [142] (см. табл. 16). Отделение и очистку марганца проводят методами хроматографии в сочетании с экстракцией при анализах солей цинка [1319], бора [175], галлия [175] и горных пород 11317, 1386]. [c.91]

    Фотометрические методы определения мышьяка в виде мышья-ковомолибдеповой сини находят широкое применение. Они используются для определения мышьяка в его соединениях [529], железе, чугуне и стали [48, 540, 666, 698, 773, 785, 790, 885, 917, 943, 949, 952, 996, 1131-1133, 1147], ферросплавах [217, 702, 703, 1203], меди и медных сплавах [158, 195, 197, 216, 515, 562, 815, 886, 952, 1043, 1133, 1209, 1210], рудах и продуктах медного и свинцово-цинкового производства [21, 81], железных рудах [652, 822, 949, 1108], свинце [158, 264, 627, 695, 886, 926, 952, 990, 1133], серебре и его сплавах [1070], Вольфраме и его рудах [1203], олове [307, 585, 661, 1208], сурьме [91, 197, 198, 264, 284, 837, 886, 894, 952, 956], висмуте [265, 764], цинке [158, 627, 926, 952], ниобии и ванадии [284], галлии [284, 2881, индии [284, 289, 430], таллии [284, 287], кремпии [284, 872], германии ]б99, 700, 872], селене [637, 1016, ИЗО], теллуре [758], хроме и его окислах [198, 216], алюминии [144], кадмии [158], олове [886], молибдене и его окислах [459], никеле [402, 562], боре [893], уране [661, 760, 849, 928], минералах [415, 869, 994], пиритах и пиритных огарках [302, 491], фосфорной [940, 941], азотной [892], серной [939] и соляной [197, 452] кислотах, природных водах [785, 942, 993], дистиллированной воде [452], фосфатах [942] и фосфорсодержащих продуктах [980, 1091], силикатах и силикатных породах [869, 942, 964, [c.61]

    Метод дуги постоянного тока использован для определения галлия в различных породах и минералах [81, 87, 174, 429, 666, 823, 873, 883, 974, 977, 1113, 1114, 1151, 1183, 1192, 1319, 1418], глинах [907, 1183], в почвах [1013], в бокситах [989, 1183], в рудах и продуктах их обогащения [56, 429, 1113, 1114, 1151, 1418], в отходах цветной металлургии [56], в ZnS [885], в золах и сланцах [1184], в огнеупорах [1183], в водах i[1325], в органичесиих соединениях [400], в HF, HNO3 и НС1 [105], в цинк-селенидных электролюминофорах [515], в сплаве In—Ga [1147], в боре (борный ангидрид, борная кислота) [75], графите [850, 929], кремнии [106, 107, 427, 1134] и его соединениях [106, 107, 397, 1134], в германии (108, 336, 336а] и его соединениях [108], в индии [88, 381], цинке [555], олове [557, 559, 560], сурьме [466], бериллии и его окиси [242], селене [506], щелочных металлах [542] и уране [730]. [c.158]

    Для определения кремния значительно чащ применяют синий кремнемолибденовый комплекс. В виде этого комплекса определяют кремний в чистом теллуре [174], в воде бойлеров и накипи [175], в пробах с высоким содержанием кремния [176], огнеупорных материалах [177], глиноземе [178,] воде [179, 180], растворах нитрата уранила [181], ферросиликохроме [182], плавиковом шпате и флюо-ритовом концентрате [183], стекле [184], неметаллических включениях [185], окиси бора [186], техническом перборате [187], железных рудах и других продуктах металлургического производства [188], химических реактивах [189], двуокиси урана [190], сталях, алюминии, цирконии, титановой губке, сплавах кремния и никеля, урана и кремния, бифториде калия [191], хроматах кальция и магния [192], минеральном сырье [193] и в других объектах [194—197]. [c.128]

    Осаждение аммиаком—одна из самых обычных операций, применяемых в анализе. Опа проводится либо для определения осажденного соединения весовым путем, либо для совместного отделения двух или нескольких металлов от других металлов. Если эта операция выполняется для количественного весового определения, то ей должно предшествовать выделение кремнекислоты и отделение элементов грунны сероводорода некоторые из этих элементов также более или менее полно осаждаются аммиаком. Вследствие того, что предварительно удалить всю кремнекислоту обычным методом невозможно, оставшееся небольшое количество ее увлекается осадком гидроокисей, и эту кремнекислоту следует выделить и определить, как указано в разделе Кремний (стр. 874). Число металлов, осаждаемых аммиаком, очень велико. Сюда входят алюминий, железо (П1), хром, таллий, галлий, индий, редкоземельные металлы, уран, титан, цирконий, бериллий, ниобии и тантал (стр. 104). К ним надо прибавить пятивалентные фосфор, мышьяк и ванадий, которые осаждаются в виде фосфатов, арсенатов и ванадатов одного или нескольких из перечисленных металлов. При большом содержании этих трех элеме] Тов осаждение их не будет полным фосфор и мышьяк в большем или меньшем количестве осаждаются в виде фосфатов и арсенатов щелочноземельных металлов и магния, если последние присутствуют . Поэтому в таких случаях осанедение аммиаком недопустимо. Неудовлетворительные результаты получаются также, когда раствор содержит большое количество цинка, особенно в присутствии хрома плохо удается разделение и в присутствии кобальта или меди. Бор мешает осаждению, и поэтому должен быть предварительно удален методом, описанным на стр. 763. [c.95]


Смотреть страницы где упоминается термин Уран, определение бора: [c.124]    [c.824]    [c.321]    [c.356]    [c.22]    [c.356]    [c.274]    [c.90]    [c.442]   
Калориметрические (фотометрические) методы определения неметаллов (1963) -- [ c.431 ]




ПОИСК





Смотрите так же термины и статьи:

Определение бора в бериллии, цирконии, тории и уране

Определение бора в тетрафториде урана с метиленовым голубым

Уран и его соединения определение бора

Уранил определение



© 2024 chem21.info Реклама на сайте