Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

также Перенос электронов

    Распространен также перенос электрона с одновременным переносом мостиковой группы, например  [c.306]

    Хаш разработал теорию процессов переноса электрона на электродах [49, 50], а также переноса электрона между ионами [29], которая является теорией адиабатического типа (соответствует схеме, представленной на рис. 1). Считается, что ионы сходятся достаточно близко, так что в активированном состоянии имеется большое резонансное расталкивание. 13 результате этого энергетический барьер становится достаточно низким, чтобы система смогла пройти над ним, и туннельный эффект практически отсутствует. [c.33]


    Для излучения кванта света в видимой части спектра в единичном химическом акте должна освобождаться энергия от 1,8 до 3,1 электрон-вольт (41-71 ккал/моль или 171-298 кДж/моль). Наиболее экзотермичными реакциями являются рекомбинация свободных радикалов или ионных пар, а также перенос электрона от анион-радикала на окислитель. Эти реакции могут сопровождаться ХЛ при соответствующих условиях. [c.69]

    Определение кислотно-основных свойств с точки зрения переноса электронов было использовано рядом английских авторов [2] для классификации реагентов на нуклеофильные (доноры электронов) и электрофильные (акцепторы электронов). Существует также классификация реакций на такие категории. [c.499]

    Аналогично может происходить миграция кратных связей и в циклоалкенах. Не исключено также, что обсуждаемое переходное состояние может быть циклическим (пушпульного типа) с переносом электронной плотности через металл катализатора, подобно рассмотренному ниже (см. с. 127). [c.31]

    В комплексе I связь атома С-3 с Р1 а.а -хемосорбционная, а в комплексе II атом С-3 находится в состоянии 5р -гибридизации. При этом л-система включает электроны, принадлежащие как атомам С-2 и С-3, так и атому Р1. Реакция облегчается частичным переносом электронной плотности с адсорбированного радикала на металл протеканию процесса способствует также гиперконъюгация за счет СНз-групп. Последнее подтверждается экспериментом реакционная способность уменьшается в ряду неопентан > изобу-таи > к-бутан [21, 34, 59, 61]. [c.98]

    Обрыв цепей происходит вследствие образования по реакции (7) стабильного свободного радикала ингибитора In, сравнительно мало активного и не способного к продолжению цепи окисления, но в то же время легко взаимодействующего по реакции (8) с активными радикалами R или ROO и обрывающего цепи окисления. Причем константа скорости реакции (8) на несколько порядков выше, чем для реакции (7) [ 7=10 - -- 105 л/(моль-с), Й8 107+10 л/(моль-с)]. Очевидно, что радикалы In являются более активными ингибиторами окисления по сравнению с исходной молекулой ингибитора. Высокая эффективность ингибирующего действия свободных радикалов при окислении топлив и масел обусловлена также участием радикалов In в реакциях переноса электрона и в реакциях тушения возбужденных состояний углеводородов. [c.40]

    Следует заметить, что перенос электронов от атома металла может происходить не только к атому кислорода карбонильной группы, но и к атому галогена в галогенпроизводных, электроотрицательность которого также высока  [c.304]


    Многие реакции, сопровождающиеся переносом электрона, также являются реакциями второго порядка, например [c.157]

    Основным моментом данной теории является рассмотрение квантовомеханического переноса электрона (а также протона) через границу металл—раствор. Для этого используется хотя и приближенный, но достаточно точный метод, получивший название адиабатического приближения Борна — Оппенгеймера. Сущность адиабатического приближения состоит в том, что всю рассматриваемую систему делят на две части быструю подсистему и медленную подсистему, которые отличаются скоростями движения входящих в них частиц. [c.285]

    Особого внимания заслуживают также многоэлектронные электрохимические процессы. Одновременный перенос п электронов при протекании таких процессов возможен, если образование промежуточных соединений при последовательном переносе электронов энергетически невыгодно. В противном случае ввиду резкого возрастания энергии реорганизации при одновременном переносе нескольких электронов более выгодным оказывается постадийное протекание процесса разряда. Таким образом, возникает необходимость обсуждения особенностей кинетики электрохимических реакций с последовательным переносом нескольких электронов. Значительный интерес представляют также электрохимические системы, в которых на поверхности электрода при постоянном потенциале возможно одновременное протекание нескольких параллельных электродных процессов. На ход электрохимических реакций влияют образование окисных слоев и адсорбция органических соединений на поверхности металла. [c.298]

    Для дальнейшего развития представлений о строении границы раздела электрод — ионная система и о кинетике процессов на этой границе необходимо усовершенствование существующих и разработка новых экспериментальных методов, более широкое применение современной электронно-вычислительной техники. Уже достигнут существенный прогресс в автоматизации электрохимических измерений и развитии разнообразных импульсных методов, позволяющих, в частности, изучать явления, которые протекают за времена порядка 10 с и менее (импульсные гальваностатические методы, метод высокочастотной рефлектометрии и др.). Далеко не исчерпаны возможности метода фотоэмиссии электронов из металла в раствор. Большой интерес представляют оптические методы изучения состояния поверхности электродов, а также воздействие на границу электрод — раствор лазерными импульсами различной длительности и частоты. Ценным дополнением к существующим методам электрохимической кинетики может служить метод изучения фарадеевских шумов — чрезвычайно слабых флуктуаций потенциала или тока, сопровождающих протекание всех электродных процессов и вызванных дискретным характером переноса электронов через границу фаз, дискретностью диффузионного потока и т. д. Использование электродов в виде очень тонких проволок или пленок, напыленных в вакууме на инертные подложки, позволяет делать выводы об адсорбционных явлениях по изменению сопротивления этих электродов. Для изучения состояния поверхности электродов и кинетики электродных процессов еще недостаточно используются такие мощные современные методы, как ЯМР, ЭПР, дифракция медленных электронов и т. п. Новые методы предварительно проверяются на ртутном электроде, на котором строение двойного слоя и кинетика многих электродных процессов исследованы с количественной стороны. По-прежнему актуальна проблема разработки методов очистки исследуемых растворов от посторонних примесей и приготовления чистых электродных поверхностей. [c.391]

    Основным моментом данной теории является рассмотрение квантовомеханического переноса электрона (а также протона) через границу металл — раствор. Для этого используется хотя и приближенный, но достаточно точный метод, получивший название адиабатического приближения Борна — Оппенгеймера. Сущность адиабатического приближения состоит в том, что всю рассматриваемую систему делят на две части быструю подсистему и медленную подсистему, которые отличаются скоростями движения входящих в них частиц. При определении волновых функций быстрых частиц положения медленных частиц полагают фиксированными. [c.302]

    Особого внимания заслуживают также многоэлектронные электрохимические процессы. Одновременный перенос п электронов при протекании таких процессов возможен, если образование промежуточных соединений при последовательном переносе электронов энергетически невыгодно. В противном случае ввиду резкого возрастания энергии реорганизации при одновременном переносе нескольких электронов более выгодным оказывается постадийное протекание процесса разряда. Таким образом, возникает необходимость обсуждения особенностей кинетики электрохимических реакций с последовательным переносом нескольких электронов. [c.312]


    В отличие от обычной гомогенной химической реакции, протекающей во всех точках объема раствора, где есть реагирующие вещества, электрохимическая реакция идет на границе раздела между электродом и раствором, т. е. является реакцией гетерогенной. Отсюда следует, что любой электродный процесс всегда имеет ряд последовательных стадий сначала реагирующее вещество должно подойти к электроду, затем должна произойти собственно электрохимическая стадия, связанная с переносом электронов или ионов через границу раздела фаз (стадия разряда — ионизации), и, наконец, образовавшиеся продукты реакции должны отойти от поверхности электрода, чтобы освободить место для новых порций реагирующего вещества. Первая и третья стадии имеют одинаковые закономерности и называются стадиями массопереноса. Стадии массопереноса и разряда—ионизации присутствуют во всех без исключения электродных процессах. Помимо этих стадий при протекании электродных реакций встречаются также и другие. Так, часто электродные процессы осложняются химическими реакциями в объеме раствора или на поверхности электрода, в которых может участвовать исходное вещество или продукт электрохимической реакции  [c.170]

    Следовательно, направление, механизм и скорость электродной реакции определяются сочетанием электрохимических и химических стадий. В силу этого обстоятельства они зависят не только от факторов, влияющих на стадию переноса электрона (потенциал и материал электрода, природа растворителя, pH раствора), но также и от факторов, воздействующих на кинетику и механизм химических реакций. Иногда это те же самые факторы, оказывающие влияние на различные стадии посредством разных механизмов, иногда совсем иные. К последним относятся, например, явления сольватации и ионной ассоциации в растворе, а также величина концентрации реагирующего вещества. [c.190]

    Следует также помнить, что для некоторых процессов в водных и, особенно часто, в апротонных средах медленной может оказаться электрохимическая стадия переноса электрона с электрода на адсорбированную органическую частицу, т. е. процессы электровосстановления на ( -металлах в принципе могут протекать и по такому же механизму, как и на 5, р-металлах. [c.283]

    В то же время известно, что хлористый алюминий является кислотой Льюиса. В связи с этим определенную роль в катализе в присутствии А1С1з должен играть также перенос электронов от молекулы алкилфенола. В этом случае переходное состояние [c.27]

    Два злектронопроводящих тела, контактирующие с электролитом и обеспечивающие обмен зарядами с участниками электрохимической реакции, а также передачу электронов во внешнюю цепь (см. ниже) пли получение их из 1знешней цепи они называются электродами. На электродах — на границе раздела двух различно проводящих фаз — происходит перенос заряда, т. е. протекают электрохимические реакции, иными словами, именно здесь локализовано взаимное превращение химической и электрической форм [c.12]

    Независимо от величины к из уравнений (22,7) — (22.9) следует, что дофазовое осаждение металлов наблюдается только в том случае, когда работа выхода электрона из металла подложки (металл М1) больше, чем из металла монослоя (Мг). Следовательно, образование монослоя сопровождается переносом электронов нз него в субстрат и появлением диполей на границе раздела М( и Мг, причем положительный конец диполя расположен на монослое. Свойства монослоя, его структура, во многом определяемая структурой субстрата, играют очень важную роль в процессе дальнейшего развития осадка, влияя также на адсорбционные, каталитические, коррозионные и другие характеристики металла. Дофазовое осаждение представляет поэтому не меньший интерес, чем зароды-шеобразование, и с ним необходимо считаться прн рассмотрении механизма возникновения новой металлической фазы. [c.458]

    Перенос электрона между радикалом и диамагнитной частицей также может происходить с такой скоростью, которая вызывает уширение спектральных линий. Одной из первых была исследована система, в которой происходил обмен электроном между нафталином и его анион-радикалом. Если растворителем служил ТГФ, константа скорости второго порядка переноса электрона составляет 610 л/мольс [25а]. Эта величина в сто раз меньше, чем для процесса, контролируемого диффузией. Полагают, что снижение скорости обусловлено тем, что наряду с переносом электрона происходит перенос положительного нротивоио-на ионной пары анион-радикала. [c.49]

    Между металлом и носителем могут возникать значительные электронные взаимодействия, особенно если частицы металла очень малы. Согласно данным о работе выходе электрона, предполагают, что от металлов, нанесенных на оксиды, электроны переходят к носителю. Частицы металлов, нанесенные на такие оксиды, как оксид кремния, приобретают небольшой положительный заряд. В системе металл — восстановленный оксид типа Т102-А- электроны переносятся в противоположном направлении, так как работа выхода у носителя ниже, чем у металла [2]. Хотя направление переноса электронов было подтверждено в различных экспериментах, величина заряда на частицах металлов все еще не определена. По-видимому, величина заряда частпц металла зависит от их размера, а также от природы металла и носителя. Предполагается, что такпе центры поверхности, которые большинство химиков называют кислотами или основаниями Льюиса, также передают заряд мелким частицам металла или получают заряд от них. Степень воздействия электронных структур объема и поверхности носителя на электронное состояние нанесенных металлов требует дальнейшего исследования. [c.15]

    Рядом авторов [284] обнаружено явление переноса электрона. в асфальтенах с участием ва-надийпорфириновых ком-- — плексов. Последние также вносят существенный вклад в поверхностную активность асфальтенов и нефти [285] (табл. 105). [c.286]

    При добавлении в систему бикарбонат-ионов уменьшается концентрация сульфат-аниои-радикалов и образуются анион-радикалы карбоната по уравнению реакции, которая также протекает в результате переноса электрона  [c.179]

    Важная информация может быть получена в результате исследования формы линии. Так, например, по эффектам диполь — дипольного уширения и обменного сужения можно судить о том, является ли пространственное распределение парамагнитных центров, статистически равномерным или они сгруппированы более плотными сгустками в определенных областях образца. Решение этих вопросов, а также оценка среднего расстояния между парамагнитными центрами важны для понимаиия кинетических особенностей радиационных и фотохимических процессов в твердой фазе, явлений адсорбции. По изменению формы линии может изучаться кинетика быстрых процессов, таких, как спиновый обмен между радикалами, реакции переноса электрона и др. Примером реакций последнего типа может служить реакция переноса электрона ог ион-радикала нафталина к молекуле нафталгша  [c.250]

    И, наконец, п-диметоксибензол (IX), не содержащий нуклеофильных групп, способных катализировать сольволиз ангидрида (VII) по нуклеофильному или общеосновному механизмам, ингибирует реакцию вследствие образования КПЗ с константой устойчивости 1,1 М" . Вероятные причины этого — стерические затруднения для взаимодействия метанола с реакционным центром в молекуле ангидрида (VII), находящейся в комплексе, а также уменьшение эффективного положительного заряда на карбонильном углероде в сольволизуемой молекуле (VII) при переносе электрона от донора (IX). (Аналогичный пример, показывающий общность данного явления, — это ингибирование [c.77]

    Окислите.иьно-восстановительные реакции особого типа протекают расплавах СОЛЕЙ, если в них присутствуют окислители (например, KNO3, КСЮз, Na202) или восстановители (K N, углерод). В этом случае одновременно с обменом электронов происходит также перенос анионов кислорода. [c.419]

    Распределение заряда определяется состаиом и энергиями заселенных МО молекул, а также возможностью изменения их заселенности за счет переноса электронов на вакантные МО. Это и показано на рис. 4.47 соответствующими стрелками, соединяющими заселенные МО двух молекул и возможные возбуждения электронов с заселенных на вакантные МО. Дисперсионный вклад связан с корреляцией движения электронов и обязательно включает взаимодействия заселенных и вакантных МО обеих молекулярных систем. Эти два вклада по своей природе отрицательны и способствуют притяжению молекул. между собой. [c.155]

    Специфические межмолекулярные взаимодействия. Водородная связь. К специфичехким межмолекулярным взаимодействиям относятся все виды взаимодействий донорно-акцепторного характера, т. в. связанные с переносом электронов от одной молекулы к другой. Донорно-акцепторный механизм образования ковалентной связи нам уже знаком (см. раздел 4.5.1), в данном случае происходит аналогичное взаимодействие, а образующаяся межмолеку-лярная связь также обладает всеми характерными особенностями ковалентной связи насыщаемостью и направленностью. [c.155]

    Важным направлением биоэлектрохимических исследований является изучение свойств мембран с встроенными ферментными системами. Так, предприняты попытки встраивания в бислойные фосфолипидные мембраны компонентов ферментных систем, присутствующих во внутренней мембране митохондрий (никотинамид — аденин — динуклеотида (ЫАОН), флавинмононуклеотида и коэнзима Р,), а также хлорофилла. На таких мембранах при наличии в водном растворе окис-лительно-восстановительных систем генерируется мембранный потенциал, вызванный протеканием окислительно-восстановительных реакций на границе мембрана — электролит. В определенных условиях мембраны оказываются проницаемыми для электронов или протонов. Эти опыты важны для понимания механизма превращения энергии и переноса электронов в живых организмах. [c.141]

    Эти процессы можно классифицировать на две подгруппы 1) реакции, при протекании которых природа и число ближайших к иону частиц, т. е. состав внутренней координационной сферы, не изменяются при образовании переходного состояния стадии переноса электрона (внешнесферные реакции электронного переноса) к таким реакциям относится взаимодействие между ферри- и ферроцианид-анионами, когда группы СЫ остаются расположенными симметрично вокруг Ре + или Ре +, а также реакция между ионами Мп04 и МпОГ 2) реакции, в переходном состоянии которых один или несколько лигандов одновременно входят в состав внутренней координационной сферы окисленной или восстановленной форм (внутрисферные реакции электронного переноса). При комплементарных реакциях электронного переноса окислитель и восстановитель изменяют свои степени окисления на одну и ту же величину. Возможны более сложные процессы типа [c.89]


Смотреть страницы где упоминается термин также Перенос электронов: [c.539]    [c.30]    [c.458]    [c.116]    [c.19]    [c.135]    [c.374]    [c.507]    [c.295]    [c.141]    [c.88]    [c.251]    [c.259]    [c.97]    [c.163]   
Молекулярная биология клетки Том5 (1987) -- [ c.0 ]




ПОИСК







© 2024 chem21.info Реклама на сайте