Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

ЯМР-спектроскопия для. качественного анализа

    Так же, как и в эмиссионной спектроскопии, качественный анализ рентгеноспектральным методом проводят путем определения длины волны интересующих линий и их последующей идентификации. Длину волны рентгеновской линии в спектре обычно определяют с помощью известных опорных линий, являющихся своеобразными стандартами. В качестве такого стандарта может быть использована или основа пробы, как это часто делается в эмиссионной спектроскопии, или известное вещество, специально вводимое в анализируемую пробу. Нередко для этого рядом со спектром анализируемой пробы фотографируют спектр известного стандартного вещества. Методика определения длины волны в этих условиях практически не отличается от той, которая используется в эмиссионной спектроскопии. [c.129]


    Как было отмечено выше, метод Ж-спектроскопии используется для качественного анализа фуллеренов и имеет весьма низкую чувствительность для их количественной идентификации. Однако при проведении качественного и количественного анализа объектов, содержащих малое количество фуллеренов. [c.16]

    Практической целью методов атомной спектроскопии при анализе вещества является качественное, полуколичественное или количественное определение элементного состава анализируемой пробы. Еще 25—30 лет назад эти задачи решались, по существу, лишь одним из методов — атомно-эмиссионным методом спектрального анализа в оптическом диапазоне спектра, В настоящее время достаточно широкое применение получили также методы анализа по атомным спектрам поглощения и флуоресценции в оптическом диапазоне, а также по эмиссионным и флуоресцентным спектрам в рентгеновском диапазоне. Во всех случаях в основе этих методов лежат квантовые переходы валентных или внутренних электронов атома из одного энергетического состояния в другое. [c.53]

    Таким образом, измерение потенциала полуволны позволяет проводить качественный анализ раствора. По своему смыслу эта величина эквивалентна длине волны максимума светопоглощения в абсорбционной спектроскопии. [c.276]

    Это затрудняет проведение качественного анализа на основании молекулярных спектров (за исключением ИК-спектров), поэтому спектрофотометрический метод обычно используют как метод количественного анализа. В отличие от других оптических методов (эмиссионная спектроскопия, люминесценция и др.), в которых измеряют интенсивность излучения предварительно возбужденной системы, спектрофотометрический метод анализа основан на избирательном поглощении однородной нерассеивающей системой электромагнитных излучений различных участков спектра. Если имеют дело с однородными средами, например растворами соединений, то количество поглощенной энергии будет пропорционально концентрации поглощаемого вещества в растворе. Если среда неоднородна, то при взаимодействии электромагнитного излучения с веществом помимо поглощения будет происходить также его рассеяние. На этом явлении основаны такие методы количественного анализа, как нефелометрия и турбидиметрия, которые здесь не рассматриваются. [c.45]


    Оптическая спектроскопия с успехом используется при решении вопросов количественного и качественного анализа, структурно-группового анализа, изучения внутри- и межмолекулярных взаимодействий, конфигурации молекул, а также исследования различных видов изомерии. Она применяется, в частности, при изучении кинетики химических реакций, определении констант диссоциации кислот и оснований и т. д. [c.123]

    Наиболее простым и давно применяемым источником возбуждения эмиссии является пламя, его использовали еще в ручном спектроскопе при проведении качественного анализа. В настоящее время пламя применяют для точных количественных определений содержания щелочных и щелочноземельных металлов в растворе в методе фотометрии пламени. Поскольку температура в зонах пламени неодинакова, возбуждающая способность этих зон также различна. Количественная оценка интенсивности излучения возможна только при работе с очень равномерным пламенем, при исключительно равномерном распределении анализируемого раствора в пламени и использовании для возбуждения одной и той же зоны пламени. [c.370]

    Аналитическая химия - наука о принципах и методах определения химического состава вещества и его структуры. Включает качественный и количественный анализы. Задача качественного анализа -обнаружение отдельных компонентов (элементов, ионов, соединений) анализируемого образца и идентификация соединений. Задача количественного анализа - определение количеств (концентрации или массы) компонентов. Некоторые современные методы анализа (например, эмиссионная спектроскопия) позволяют сразу получить информацию и о качественном составе образца и о количественном содержании отде компонентов. [c.10]

    Общие принципы качественного анализа методом ИК-спектроскопии детально изложены в специальных монографиях, в которых приведены данные о характеристических частотах (см. список литературы). [c.185]

    Идентификация соединений и качественный анализ стабильных продуктов химических реакций. При исследовании механизма химической реакции очень важно знать, какие вещества и в каких соотношениях образовались в результате реакции это дает ценную информацию о возможных путях протекания процесса, а также о промежуточных веществах. В этом отношении ИК-спектроскопия дополняет другие методы исследования. Особенно большую ценность представляет метод ИК-спектроскопии для обнаружения и идентификации различных веществ. Так, многие вещества (предельные углеводороды, олефины с несопряженной двойной связью) не поглощают в видимой и УФ-областях спектра, но дают характерные ИК-спектры. [c.211]

    В современном качественном анализе широко используются неорганические и органические реагенты, методы экстракции, хроматографии, спектроскопии, электрохимии и др. [c.13]

    В 1859 г. немецкие ученые химик Р. В. Бунзен (1811—1899) и физик Г. Кирхгоф (1824—1887) опубликовали результаты исследований спектров с помощью впервые примененного ими спектроскопа, что положило начало применению спектрального анализа как аналитического метода. Хотя Р. В. Бунзен и Г. Кирхгоф и не являются первооткрывателями спектров, а их исследования базировались на результатах, полученных их предшественниками, только после работ (1859—1861) этих ученых спектральный анализ сформировался как аналитический метод, который в последующие годы развивался многими учеными и нашел широкое применение в современной аналитике. Вначале он использовался в качественном анализе и лишь после исследований английского химика У. Н. Хартли (1846—1913), который считается основоположником количественного спектрального анализа, (тал применяться для количественных определений. [c.42]

    При применении ИК-спектроскопии в качественном анализе часто используют концепцию характеристических частот. В соответствии с уравнением (20.6) единственная основная колебательная частота двухатомной молекулы есть функция силовой постоянной к и масс обоих [c.535]

    Огромное число органических соединений не дает возможности создать для их идентификации химическими методами стройную схему систематического разделения, подобную имеющейся в неорганическом качественном анализе. В большинстве случаев с помощью хроматографических методов — газовой хроматографии (разд, А, 2.5,4.3), а также бумажной и тонкослойной хроматографии (разд. А, 2.5.4 и А, 2.6.3) — оказывается возможным определить число веществ в анализируемой смеси. Комбинируя описанные ниже предварительные испытания со спектральными методами (ИК-, УФ- и ЯМР-спектроскопия), можно в короткий срок установить качественный состав смеси. [c.291]

    В пособии представлен качественный анализ элементов и определение структурных фрагментов основных классов органических соединений, что дает возможность экспериментатору убедиться в получении вещества заданной структуры. Особенно информативными в этом отношении являются физико-химические (инструментальные) методы анализа, такие, как ИК, УФ, ЯМР спектроскопия, масс-спектрометрия, а также различные виды хроматографии, большинство из которых отражены в настоящем практикуме. [c.8]


    Инфракрасная спектроскопия (ИКС) — раздел спектроскопии, охватывающий длинноволновую область спектра (>700 нм за красной границей видимого спектра). По инфракрасны.ч спектрам поглощения можно установить строение молекул различных органических (и неорганических) веществ антибиотиков, ферментов, алкалоидов, полимеров, комплексных соединений и др. По числу н положению пиков в ИК спектрах поглощения можно судить о природе вещества (качественный анализ), а по интенсивности полос поглощения — о количестве вещества (количественный анализ). Основные приборы — различного типа инфракрасные спектрографы. [c.57]

    Качественный анализ разделенной на хроматографической колонке смеси можно выполнять либо по характеристикам удерживания компонентов, либо при помощи аналитических приемов (инфракрасной спектроскопии, масс-спектроскопии и др.). [c.158]

    Аналогичный принцип лежит в основе использования гибридных методов - ГХ-МС и ГК-ИК. Данные, получаемые при сочетании нескольких методов, более надежны, чем те, которые основаны на применении одного метода. Таким образом, появление на рынке систем, сочетающих ГХ, МС-спектрометрию и ИК-спектроскопию, дает существенный импульс развитию качественного анализа органических соединений [8]. [c.94]

    Применение ИКС в исследовании строения и состава каучуков началось более 60 лет назад [25, 26, 27, 28]. Первые спектроскопические работы были посвящены расшифровке спектров каучуков, одновременно появился ряд работ по изучению процессов окисления и вулканизации каучуков. Методы ИК спектроскопии совместно с пиролитической газовой хроматографией наиболее часто используют для качественного анализа полимерной матрицы, что нашло отражение в отраслевом стандарте ОСТ 38 05220-81. Резина. Идентификация полимера методом ИК-спектроскопии . [c.224]

    В ряде случаев для оценки биологической инертности материалов необходимо осуществлять максимально полную идентификацию выделяющихся из эластомера веществ. Для оценки индивидуальных показателей изучают миграцию в модельные среды наиболее реакционноспособных и биологически активных веществ с помощью методов хроматографии (тонкослойной и газовой), фотометрии, масс-спектрометрии, проводят качественный анализ содержания химических элементов и ионов. Исследование процессов, связанных с миграцией ряда ингредиентов на поверхность резин, оказалось возможным лишь при сочетании нескольких методов - световой микроскопии, инфракрасной спектроскопии с нарушенным полным внутренним отражением (НПВО) и наиболее эффективной вследствие высокой чувствительности и избирательности тонкослойной хроматографии. [c.557]

    Для качественного анализа вполне пригоден так называемый ручной спектроскоп (рис. 36). [c.49]

    Качественный анализ ацетонового экстракта методом ИК-спектроскопии свидетельствует о наличии в нем соединения, содержащего группы 51—С (800 1260 см ) и 51—О (1025, 1100 см ) (рис. П1.2). Спектр СМ-2 в ацетоновом экстракте не идентичен спектру исходного стабилизатора СМ-2 (рис. П1.3). [c.121]

    I. Поскольку сигнал возникает только в результате поглощения света, то формы оптико-акустического и абсорбционного спектров совпадают (рис. 11.76). Следовательно, рассматриваемый метод имеет все недостатки метода молекулярной абсорбционной спектроскопии при качественном анализе. [c.330]

    Простейший спектроскоп с решеткой состоит лишь из диафрагмы с регулируемой щелью и пропускающей решеткой (рис. 5.10). Его можно сконструировать карманных размеров и с успехом применять при качественном анализе, например, при испытании вещества в пламени. Решетки, предназначенные для карманных и других небольших приборов, изготовляют путем применения отпечатков (реплики). С этой целью образец решетки с нанесенными алмазным резцом штрихами покры- [c.89]

    Качественный анализ сталей и других сплавов можно проводить визуально при помош,и простого спектроскопа, обычно используемого в сочетании с дугой постоянного тока. Прибором, предназначенным для этой цели, является стилоскоп. К прибору прилагается серия эталонных диаграмм, на каждой из которых имеется цветная репродукция части спектра железа, воспроизведенная точно в соответствии с увеличением, наблюдаемым в стилоскопе. На этих диаграммах также отчетливо обозначены наиболее надежные линии обычных легирующих элементов. Примеры применения стилоскопа можно найти в статье Эми-ри [6]. [c.97]

    С помощью спектроскопии ЯМР можно решать те же основные задачи, что и с помощью ИК- и УФ-спектроскопии определять структуру органических соединений, проводить кинетические исследования, решать задачи количественного и качественного анализа. Появление спектроскопии ЯМР вызвало, по существу, переворот в стереохимии. Как правило, спектры ЯМР дают гораздо больше информации об органическом соединении, чем другие виды спектроскопии однако все методы спектрального исследования лучше применять комплексно, поскольку они взаимно дополняют друг друга. [c.114]

    Для количественного н качественного функционального анализа неуглеводородных соединений в остаточных нефтепродуктах [2.3-2.5] используется элементный анализ, потенциометрическое титрование, ИК-, УФ- н масс-спектроско-11ИЯ, люминесцентная спектроскопия. Параллельно желательно снимать для сравнения спектры эталонных индивидуальных соединений или нх смесей. Для качественного анализа можно пользоваться табличными данными по характеристическим полосам поглоидения [2.10, 2.11]. [c.37]

    Качественный анализ и идентиф икация органических соединений с помощью масс-спектрометра высокого разрешения с двойной фокусировкой основаны на точном определении разности масс ионов в сочетании с известными дефектами масс изотопов атомов в исследуемых веществах. Этот метод, впервые предложенный Бейноном [214—216] для качественного анализа соединений относительно низкого молекулярного веса (меньше 250), представляет собой спектроскопию дефектов масс и при выводе структурной формулы учитывает соотношение интенсивностей пиков ионов, входящих в состав мультиплетов, обладаюишх одинаковой номинальной массой. [c.125]

    Фотометрию пламени в узком смысле можно рассматривать как метод эмиссионной спектроскопии. Окрашивание пламени, возникающее, например, при внесении летучих солей щелочных и щелочноземельных металлов в пламя, издавна используют для целей качественного анализа. Но визуальным методом можно определить окрашивание пламени только в видимой части сп( ктра и невозможно разложить смешанную окраску на составные цвета, а интенсивность окраски можно оценить лишь очень приешизительно. В фотометрии пламени измеряют интенсивность излучения и при определенных условиях используют зависимость ее от концентрации веществ, вызывающих окрашивание пламени. [c.373]

    Кроме перечисленных выше методов для идентификации хроматографически разделенных веществ, могут быть использованы кулонометрия, полярография, спектроскопия в ультрафиолетовой и видимой областях, обычный анализ элементарного состава и др. При отсутствии перечисленных дорогостоящих приборов во многих случаях можно воспользоваться классическими методами качественного анализа. [c.122]

    Кроме особенностей в методике регистрации спектров, отличительной чертой метода ИК-спектроскопии отражения-поглощения является и интерпретация спектров. Сопоставление спектрального хода оптических постоянных слоев в области полосы поглощения и спектрального хода фактора поглощения показывает, что для слабопоглощающпх (к<0,2) молекулярных веществ спектры отражения-поглощения совпадают со спектрами пропускания, и их интерпретацию следует проводить аналогично спектрам пропускания. Для сильнопоглощающих веществ, например оксидных слоев, положение максимума поглощения в спектре отражения-поглощения не совпадает с максимумом коэффициента поглощения 2, а зависит также от показателя преломления Лз слоя и находится с высокочастотной стороны от максимума в области, где 2— 2- Эта частота близка к частоте продольных колебаний атомов вещества слоя и является вполне характеристичной, т. е. позволяет выполнять качественный анализ исследуемых соединений. [c.150]

    Из таких комбинированных методов, являющихся в настоящее время наиболее информативными при качественном анализе сложнейших смесей неизвестного состава, следует особо зыделить два — хромато-масс-сиектрометрию и сочетание газовой хроматографии с ИК-фурье-спектроскопией. [c.10]

    Не все перечисленные методы получили широкое распространение в качественном анализе. Так, в фарммкопейном анализе применяют эмиссионный спектральный (сравнительно редко), атомно-абсорбционный, молекулярный абсорбционный спекфальный, люминесцентньн г, рефрактометрический, поляриметрический анализ, спектроскопию ЯМР м ЭПР (относительно редко) другие оптические методы используются шачи-тельно реже. [c.516]

    ИДЕНТИФИКАЦИЯ, установление тождества (идентичности) неизвестного хим. соед. с известным путем сравнения нх физ. и хим. св-в. И. неорг. соединений основана М. обр. на обнаружении катионов и анионов с помощью ирактерных хим. р-ций (см. Качественный анализ). JB ряде случаев (напр., для комплексных соед.) определяют ( одержание или соотношение ионов. Измеряют также константы диссоциации, теплопроводность, электрич. прово-шмость, устанавливают тип кристаллич. решетки и т. д. рольшое значение приобрели спектральные методы — ИК g УФ спектроскопия, ЯМР и т. д. [c.207]

    Описанная выше методика двойного резонанса представляет собой полезное расширение применения ЯМР-спектроскопии для измерения констант скоростей. Она применима к области медленного обмена, где форма линии спектра нечувствительна к изучаемому динамическому процессу. Она также представляет собой изящный метод идентификации обменивающихся ядер, или качественного анализа динамического поведения молекулы. Например, эта методика была с успехом применена для обнаружения конформационной нежесткости [18] аннулена при комнатной температуре. Облучение сигнала внутренних протонов приводит к четкому уменьшению интенсивности сигнала внешних протонов (разд. 2,3 гл. VIII) вследствие протекания процесса химического обмена между этими двумя положениями. [c.318]

    Потери энергии в результате ионизации определяются энергией ионизации (практически эквивалентной энергии связи Есв) отдельного активного уровня. Отсюда непосредственно вытекает возможность проведения качественного анализа. Поэтому спектроскопия потерь энергии прошедших электронов (СПЭПЭ) является ценным методом анализа наноучастков материалов. [c.329]

    Качественный анализ на основе величин удерживания (метод сравнения, метод "метки", по удерживанию идентифицируемых соединений различными неподвижными фазами, с использованием корреляционных зависимостей параметров удерживания со строением молекул и их физико-химическими свойствами). Реакционная газовая хроматография. Хроматоспектральный анализ (сочетание газовой хроматографии с масс-и ИК-спектроскопии). [c.146]

    Предлагаемая читателю книга Р. Шрайнера, Р. Фьюзона, Д. Кёртина и Т. Моррилла Идентификация органических соединений издается на русском языке во второй раз. Первое издание книги, написанной Шрайнером и Фьюзоном, было переведено на русский язык и выпущено Издательством иностранной литературы в 1950 г. под названием Систематический качественный анализ органических соединений и долгое время пользовалось признанием химиков-органиков, встречающихся в своей практике с проблемой идентификации неизвестных органических веществ. Однако за тридцать лет со времени выхода в свет этой книги произошли весьма значительные изменения в методическом оснащении органической химии. Помимо классических методов исследования состава смесей и строения индивидуальных веществ, сохраняющих и поныне свое значение, появились такие мощные методы, как масс-спектрометрия органических соединений, методы спектроскопии ядерного магнитного резонанса на протонах, ядрах углерода-13, фтора, фосфора, бора и других. Обычными даже для рядовой органической лаборатории стали приборы для спектрометрии в ультрафиолетовой и инфракрасной областях спектра. [c.5]

    Одна ю самых замечательных особенностей атомных спектров — их линейчатая структура (разд. 11.2). Ввиду этого атомные спектры весьма информативны. Положения линий индивидуальны для каждого элемента И мо1уг использоваться для качественного анализа. На зависимости интенсивности спектральной линии от содержания элемента в пробе основан количественный анализ. Ввиду того, что ширина атомных спектральных линий весьма мала, относительно мала и вероятность наложения линий различных элементов. Поэтому многие методы атомной спектроскопии можно использовать для обнаружения и определения одновременно нескольких элементов, т. е. для многоэлементного анализа. [c.224]

    Какой метод — атомно-эмиссионной ипи атомно-абсорбтщонной спектроскопии целесообразно использовать для качественного анализа Почему  [c.359]

    Появление спектроскопа в онце XIX века оказало значительное влияние на развитие методов анализа. Первое время спектроскопией пользовались только для целей качественного анализа основными методами количественното анализа в течение многих лет ио-прежнему оставались весовой и объемный анализ. Постепенио вводились некоторые колориметрические и нефелометрические методы, главным образом для определения тех веществ, для которых не было известно других методов измерений или они давали ненадежные результаты. Затем было найдено, что для установления конечной точки титрования можно использовать измерения, связанные с прохожденнем электрического тока. Начиная приблизительно с 1930 г. быстрое развитие электронно-ламповых усилителей, фотоэлементов и других приборов привело к внедрению многих аналитических методов, основанных на применении этих приборов. В настоящее время химик-аналитик должен уметь обращаться примерно с дюжиной приборов, которые в сущности 20 лет назад еще не были известны. [c.9]


Библиография для ЯМР-спектроскопия для. качественного анализа: [c.101]   
Смотреть страницы где упоминается термин ЯМР-спектроскопия для. качественного анализа: [c.4]    [c.529]    [c.98]    [c.120]    [c.45]    [c.38]    [c.111]   
Основы органической химии (1968) -- [ c.56 , c.58 ]




ПОИСК





Смотрите так же термины и статьи:

Анализ качественный

спектроскопия анализ

спектроскопия качественный



© 2025 chem21.info Реклама на сайте