Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Кетоны многоатомные

    Жесткие требования предъявляются к качеству обработки сточной воды. Эта вода обычно содержит примеси, которые в зависимости от характера производства находятся в ней в растворенном или взвешенном состоянии. Заводы промышленности органического синтеза загрязняют воду углеводородными газами, окисью и двуокисью углерода, одно-и многоатомными спиртами, альдегидами, кетонами, эфирами, бензолом, фенолами и другими веществами. Предельно допустимые концентрации некоторых загрязняющих примесей в воде приведены в табл. 48. [c.188]


    Гликоли, глицерин 15], пентаэритрит [И] и многие другие многоатомные спирты конденсируются с карбонильными соединениями, в том числе с кетонами, образуя циклические ацетали или кетали. В качестве хорошего реагента для защиты карбонильной группы был предложен неопентилгликоль [23] [c.584]

    По своему строению простые углеводы являются альдегидами или кетонами многоатомных спиртов. Углеводы могут быть получены из многоатомных спиртов путем окисления первичной или вторичной спиртовой группы. Например, при окислении глицерина можно получить углеводы триозы  [c.167]

    Моносахариды — кристаллические вещества, растворимые в воде, сладкие на вкус. По своему строению они являются альдегидами или кетонами многоатомных спиртов и при известных условиях могут восстанавливаться в соответствующие спирты. [c.171]

    Моносахаридами называются такие альдегидо- или кетоно-многоатомные спирты, которые способны образовывать циклическую (окисную) форму и давать озазоны. [c.94]

    В 60—80 гг. прошлого столетия работами Вертело, А. А. Колли, Килиани, Э. Фишера и др. было доказано, что в моносахаридах имеется неразветвленная цепь углеродных атомов один из атомов кислорода в их молекулах образует карбонильную — альдегидную или кетонную группу, а остальные кислородные атомы — несколько спиртовых гидроксильных (окси-) групп, в результате первоначально был сделан вывод, что моносахариды имеют оксикарбонильное строение, т. е. представляют собой многоатомные оксиальдегиды (альдегидоспирты) или оксикетоны (кетоноспирты) с открытой цепью углеродных атомов. [c.221]

    Углеводы — основные питательные и скелетные компоненты клеток и тканей растений. Они состоят из углерода, водорода и кислорода и составляют 75—80% сухих веществ растения. По химической природе углеводы являются альдегидами или кетонами многоатомных спиртов или продуктов их конденсации. [c.46]

    Фракция Сд—С а) использовалась во время воины влк сте с многоатомными спиртами для получения пластификаторов б) восстанавливалась до спиртов, применявшихся для получеиия пластификаторов в) использовалась д,пя получения смол алкидного типа г) использовалась в пенообразователях д) использовалась для получения кетонов путем реакции в жидкой фазе в присутствии железа, нри утом, помимо кетона, вы- [c.281]

    К углеводам относятся сахароподобные вещества, содержащие одновременно несколько гидроксильных групп и альдегидную или кетонную группу. Таким образом, углеводы представляют собой многоатомные альдегидоспирты или многоатомные кетоспирты. [c.162]

    Фруктоза является представителем кетогексоз и обладает свойствами многоатомных спиртов и кетонов. В природе она встречается во многих растениях, плодах  [c.247]


    Предприятия по переработке нефти и по производству продуктов нефтехимического синтеза на основные технологические установки потребляют значительное количество воды. Для выработки одной тонны некоторых нефтепродуктов расход воды достигает нескольких десятков кубических метров. С технологических установок отработанная вода, называемая также сточной водой, обычно сбрасывается в те же водоемы, откуда она забиралась. Эта вода содержит примеси, которые в зависимости от характера производства находятся в ней в растворенном или взвешенном состоянии. В сточных водах нефтеперерабатывающих заводов обычно встречаются нефть, легкие и тяжелые нефтепродукты, углеводородные газы, вымываемые из нефти соли, серная кислота и ее соли, сульфиды, бисульфиды, а также сероводород. Заводы нефтехимического синтеза загрязняют воду углеводородными газами, окисью и двуокисью углерода, одно- и многоатомными спиртами, альдегидами, кетонами, эфирами, бензолом, фенолами и другими веществами. [c.328]

    Фруктоза одновременно является и кетоном, и многоатомным спиртом фруктоза—кетоноспирт. [c.316]

    Гидрирование более сложных фурановых веществ, например, продуктов конденсации фурфурола с различными кетонами и альдегидами приводит к образованию более высокомолекулярных производных тетрагидрофурана и алифатических соединений, в том числе многоатомных спиртов (20, 89). Уже указывалось, что многие из тетрагидрофурановых спиртов, полученных этим путем, а также их сложных и простых эфиров могут быть рекомендованы как пластификаторы высокополимеров (17, 18, 19). [c.233]

    При отстаивании дистиллят разделяется на два слоя верхний — так называемую жижку и нижний — отстойную (осадочную) смолу. Отстоявшийся дистиллят представляет собой жидкость с удельным весом от 1,02 до 1,05, с характерным кисло-смоляным запахом и окраской от желтой до красновато-бурой. В дистилляте содержится около 10—20% органических веш,еств из числа указанных выше. Часть этих продуктов вследствие растворяющ.его действия кислот, спиртов, эфиров и кетонов находится в растворенном виде, образуя растворимую смолу. При перегонках такая смола остается в кубовом остатке. Она содержит более трети веществ углеводного характера (в основном левоглюкозан, полисахариды). Кроме того, в ней находятся лактоны и полиэфиры оксикислот, многоатомные фенолы, их эфиры, различные кислоты и другие вещества. [c.127]

    В зависимости от состава, строения и свойств среди углеводов выделяют моносахариды, олигосахариды и высшие полисахариды. Моносахариды содержат в своем составе от двух до семи соединенных в цепочку атомов углерода. Они первичные продукты фотосинтеза. В зависимости от количества атомов углерода, входящих в молекулу моносахарида, различают биозы, триозы, тетрозы, пентозы, гексозы и гептозы. Важнейшими представителями триоз являются глицериновый альдегид и диоксиа-цетон, представителями тетроз — эритроза, пентозы — рибоза, дезоксирибоза, ксилоза и др. гексозы — глюкоза и фруктоза, гептоз — седогептулоза. Моносахариды построены по типу альдегидов или кетонов многоатомных спиртов. [c.209]

    Моносахариды гю своему строению являются альдегидами и.яи кетонами многоатомных спиртов, т. е. оксиоксосоединениями. Оии имеют, как правило, в молекуле одну альдегидную или кетонную группу и несколько спиртовых групп хотя могут быть моносахариды и с двумя карбонильными группами, например так называемые озоны. Вертело первый указал, что монозы—многоатомные спирты, однако пятиатомность глюкозы была в действительности доказана нашим соотечественником А. А. Колли (1870). Им же был выдвинут постулат о циклическом строении глюкозы. Моносахариды отличаются от полисахаридов тем, что они не способны к гидролитическому расщеплению. [c.145]

    Углеводы по своей химической природе являются альдегидами или кетонами многоатомных спиртов или же продуктами их конденсации. Все углеводы делят в основном на три класса моносахариды, или простые сахара, дисахарнды и трисахариды (их называют также олигосахаридами, от греч. oligos — немногие) и полисахариды. Сложные углеводы — олиго- и полисахариды построены из моносахаридов, которые и являются их мономерами. Моносахариды и дисахариды обычно называются сахарами. Этим подчеркивается их вкусовая особенность — сладость. Однако сладким вкусом обладают и некоторые другие органические соединения, в частности сахарин (сульфамид бензойной кислоты). Он слаще сахара почти в 500 раз, однако по структуре, и свойствам далек от углеводов. Моносахариды состава Сп Нг Оп положены в основу их номенклатуры (тип 1). Моносахариды, содержащие на конце молекулы карбонильную группу, называют альдозами. Если же карбонильная группа расположена между атомами углерода, их называют кетозами. [c.82]

    Углеводы по своей химической природе являются альдегидами и.чи кетонами многоатомных спиртов или же продуктами их конденсации. Название углеводы возникло в связи с тем, что на первых порах их изучения считали, что все они имеют состав СдНупОп или Сп(Н. О)п. Иными словами, что у них водород и кислород представлены в таких же соотношениях, как и в воде (2 1). В дальнейшем было установлено, что имеются углеводы, у которых соотношение между количествами водорода и кислорода иное. С другой стороны, известны вещества с таким же соотношением между водородом и кислородом, как в воде, но которые тем не менее не являются углеводами, например, уксусная кислота — С3Н4О2, молочная кислота — С3НР3. [c.57]


    Раз. 10жение перекисей. В конечных продуктах автоокислительных реакций часто находятся и выделяются отличающиеся от перекисей соединения. В литературе приводятся многочисленные примеры образования в этих процессах таких продуктов, как многоатомные спирты, альдегиды, кетоны, окиси олефинов, сложные эфиры и кислоты. Для анализов продуктов окисления были предложены общие методы [70]. [c.295]

    Неионогенные ПАВ — это соединения, практически не образующие в водном растворе ионов. Растворимость их в воде определяется наличием в воде нескольких молярных групп, имеющих сильное сродство с водой. Группа неноногенных ПАВ объединяет довольно большое количество соединений, принадлежащих к различным классам веществ. В частности, к данной группа ПАВ относятся одно- и многоатомные спирты, кислоты органические, амины, альдегиды и кетоны, простые эфиры сложные эфиры глюкозидов, сложные эфиры одно- и многоатомных спиртов и кислот, амиды кислот, нутрилы, нитросоединения, алкил-галогениды, оксиэтильные производные веществ, имеющих активный атом водорода (спиртов, кислот, аминов, фенолов и др.) сополимеры окиси этилена и окиси пропилена, так называемые плюроники и проксанолы. [c.12]

    Dakin реакция Дэкина — получение многоатомного фенола действием горячей Н2О2 на щелочной раствор орто- или параоксибензальдегида или кетона с замещением альдегидной группы или ацетогруппы гидроксильной группой [c.385]

    Углеводы относятся к органическим соединениям, содержащим одновременно в молекуле альдегидную (или кетонную) группу и несколько спиртовых групп. Другими словами, углеводы являются многоатомными альдегидоспиртами (полиоксиальдегидами) или многоатомными кетоноспиртами (полиоксикетонами). [c.231]

    Углеводы — органические соединения, содержащие в молекуле одновременно альдегидную или кетонную группу и несколько спиртовых групп, т. е. углеводы — это многоатомные альдегидо-спирты (полиоксиальдегиды) или многоатомные кетоноспирты (полиоксикетоны). [c.98]

    Циклические полуацетальные формы моносахаридов. Строение моносахаридов как многоатомных оксиальдегидов или оксикетонов подтверждается многими присущими им реакциями. Однако моносахариды обладают и некоторыми особенностями, отличающими их от альдегидов и кетонов. Так, например, оказалось, что альдогексозы не дают окрашивания с фуксинсернистой кислотой — реакции, характерной для альдегидной группы (стр. 141) моносахариды не образуют кристаллических продуктов присоединения с бисульфитом (ЫаНЗОд) (стр. 141). Они не дают и ряда других реакций, которые должны были бы давать как оксиальдегиды или оксикетоны. [c.226]

    Многоатомные фенолы (резорцин, орсин, флороглюцин) могут быть цианэтилированы в ядро действием акрилонитрила и хлористого водорода в присутствии хлористого цинка, причем образуется соответствующий оксикумарин и частично кетон [c.68]

    Группа 1П. Вещества, на свойства которых оказывают влияние и полярные и неполярные остатки низшие алифатические спирты, ннзшне алифатические альдегиды и кетоны, низшие алифатические нитрилы, амиды кислот -и оксимы, низшие циклические простые эфиры (тетрагидрофуран, диоксан), низшие и средние карбоновые кислоты, окси- и кетокислоты, дикарбоновые кислоты, многоатомные фенолы, алифатические амины, пиридин и его гомологи, аминофенолы. [c.296]

    Алифатические кетоны на ртутном нли свинцовом катоде превращаются иногда в металлорганнческне соединення. Во многих случаях одновременно образуются различные продукты Для получения однородного про дгкта необходимо тщательно подбирать все параметры реакции индивидуально для каждого соединения В условиях, аналогичных восстановлению альдегидов н ке тонов, сахара восстанавливаются до многоатомных спиртов [93], а хиноны — до гндрохнпонов [94, 95] [c.382]

    ХЕУОРСА ФОРМУЛЫ, то же, гго Хоуорса формулы. ХЁША РЕАКЦИЯ (Губена - Хеша р-ция. Хеша р-ция), получение ароматич. кетонов путем С-ацилирования многоатомных фенолов (или их эфиров) с помощью нитрилов и НС1, напр.  [c.229]

    Специфические реагенты (реактивы) — органические или неорганические реагенты, которые позволяют при определенных условиях обнаруживать (определять) одно вещество (нон элемента). Напр., крахмал представляет С. р. на свободный ио,7,. Спирты (алкоголи) -—органические соединения, содержащие гидроксогрупну ОН, соединенную с каким-либо углеводородным радикалом. По числу гидроксогрупп различают одноатомные спирты (СНзОН — метиловый, СвНбСНаОН — бензило-вый), двухатомные (СНгОН—СНгОН — этиленгликоль), многоатомные (глицерин СНзОН-СН(ОН) —СНгОН) если радикал ароматический, то С. называют фенолами. Низшие предельные С.— легко подвижные, растворимые в воде жидкости с характерным запахом и жгучим вкусом более сложные (от С4 до Си) — маслянистые жидкости, не смешивающиеся с водой выше i2—твердые вещества без запаха и вкуса. С. образуют алкоголяты с активными металлами (напр., HsONa), первичные С. окисляются до альдегидов, вторичные —до кетонов, дегидратируются  [c.125]

    Так, спиртовые группы оксиоксосоединений ацетилируются уксусным ангидридом, и по его расходу можно судить о числе оксигрупп в молекуле. Первичные спиртовые группы могут быть окислены в альдегидные и затем в карбоксильные. Альдегидные группы можно восстановить в первичные спиртовые, а кетонные — во вторичные спиртовые. Все эти реакции устанавливают родственные связи оксиоксосоединений с оксИ кислотами и многоатомными спиртами. Проиллюстрируем такие родственные отношения на примере структур глицеринового альдегида, тетра-оксипентаналя (альдопентозы) и пентаоксигексаналя (альдогексозы), не вникая пока в стереохимические отношения (см. схему). [c.436]

    По своему строению простые сахара — соединения со смешанными функциями. Это многоатомные альдегида- или кетоно-спирты, существующие преимущественно в форме циклических полуацеталей. В зависимости от наличия характерной функциональной группы (альдегидной или кетонной) все простые сахара делят также на две группы альдозы и кетозы. [c.95]

    По химическому составу в экстрактивных веществах древесины выделяют следующие основные классы соединений углеводороды (главным образом, терпеновые) спирты (многоатомные, высшие алифатические, циклические, в том числе терпеновые и стерины) свободные и связанные альдегиды и кетоны (относящиеся к терпеноидам и др.) кислоты высшие жирные и их эфиры (жиры и воски) смоляные кислоты (производные дитерпенов) углеводы (моно- и олигосахариды, водорастворимые полисахариды, полиурониды) и их производные (гликозиды и др.) фенольные соединения (таннины, флавоноиды, лигнаны, гидроксистильбены и др.) азотсодержащие соединения (белки, алкалоиды и др.) соли неорганических и органических кислот. [c.497]

    Моносахариды можно рассматривать как производные многоатомных спиртов, содержащие карбонильную (альдегидную или кетонную) группу. Если карбонильная группа находится в конце цепи, то моносахарид представляет собой альдегид и называется альдоз ой при любом другом положении этой группы моносахарид является кетоном и называется кетозой. [c.170]

    Вода. В качестве растворителя довольно часто применяют воду В воде хорошо растворимы соли органических кислот и основа ний, но при этом, однако, следут иметь в виду возможность гид ролиза, в результате которого при достаточном разбавлении мо жет выделяться в осадок свободная кислота или свободное основа пие. Аминокислоты, которые в большинстве случаев можно рас сматривать как внутренние соли, также растворимы в воде С водой смешиваются во всех отношениях низшие спирты, кетоны, карбоновые кислоты, жирные амины. Очень легко растворяются п воде многоатомные спирты и фенолы, многие оксикислоты и т. п. 15оду применяют для разбавления таких растворителей, как спирт, мцетон, ледяная уксусная кислота, пиридин, с целью уменьшения их растворяющей способности. Кроме того, водой пользуются для [c.19]

    Ниэшие гликоли полностью смешиваются с водой, а также с органическими соединениями, растворимыми в воде алифатическими спиртами, альдегидами, кетонами, кислотами, аминами, с некоторыми ароматическими гидроксилсодержащими соединениями, например фенолом, резорцином, многоатомными спиртами (глицерином). При числе атомов углерода в молекуле гликоля выше 7 растворимость его в воде ухудшается. [c.18]

    А — вещества с высокой летучестью (низкомолекулярные спирты, альдегиды, кетоны, кислоты, амины, нитрилы и хлорангидриды кислот) Б — вещества с низкой летучестью (многоатомные спирты, соли, альдегиды и кето-спирты, углеводы, амино- и гидроксикислоты) В — вещества с низкой летучестью (высшие кислоты, нитрофенолы) Г — вещества с высокой температурой кипения (фенолы, первичные и вторичные нитросоединения, сульфамиды, слабые кислоты) Д — вещества с высокой температурой кипения перегоняются с водяным паром (амины, содержащие небольшое число арильных групп, гидразин) Е — низколетучие вещества (третичные нитросоединения, нитроанилин, азо- и азоксисоеди-нения, эфиры азотной, азотистой, серной и фосфорной кислот) Ж — вещества с малой летучестью (спирты, альдегиды, метилкетоны и эфиры с числом С-атомов менее 9, простые эфиры, олефины) 3 — вещества с очень малой летучестью (спирты, альдегиды, кетоны, эфиры и тиоспирты с числом С-атомов более 9, простые эфиры, олефины) И — вещества с низкой температурой кипения (углеводороды, алкилгалогениды). [c.147]

    Соли бензопирилия XVI образуются при взаимодействии фенолов с ацетиленовыми кетонами в присутствии минеральных кислот в уксусной кислоте или в эфире. По существу этот способ аналогичен способу получения солей бензопирилия из Р-кетоноальдегидов и фенолов, В случае многоатомных фенолов, например резорцина, лучшим реагентом является концентрированная [c.216]


Смотреть страницы где упоминается термин Кетоны многоатомные: [c.58]    [c.547]    [c.102]    [c.775]    [c.338]    [c.289]    [c.289]    [c.237]    [c.318]    [c.15]    [c.15]   
Основные начала органической химии том 1 (1963) -- [ c.501 , c.503 , c.608 ]

Основные начала органической химии Том 1 Издание 6 (1954) -- [ c.435 , c.436 , c.441 ]




ПОИСК







© 2025 chem21.info Реклама на сайте