Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Катализаторы метилстирола

    В результате содружества советских и чехословацких исследователей был создан катализатор, известный под маркой Р-1 [6]. На указанных катализаторах конверсия этилбензола в стирол составляла около 40% при селективности 90%. Впоследствии были созданы катализаторы КС-1 и КС-2 [7, 8], позволившие поднять конверсию в трубчатых реакторах до 50—55% и катализаторы К-22 [9] и КМС [10], которые успешно использовались также и для дегидрирования изопропилбензола в а-метилстирол [11, 12]. [c.734]


    В СССР освоено изготовление нового типа катализатора — железного , марки Р-1, вместо катализатора К-12. Этот катализатор успешно применяется для дегидрирования изопропилбензола в а-метилстирол. Применение его для дегидрирования этилбензола в стирол в лабораторных условиях дало неплохие результаты. [c.231]

    Влияние состава сырья на распределение кокса по грануле катализатора крекинга подробно изучено в работе [42]. Алюмосиликатный катализатор при 500 °С обрабатывали стиролом, бутадиеном, изобутаном, а-метилстиролом и н-гексадеканом. Подсчитано, что если бы кокс заполнил весь свободный объем пор этого катализатора, его количество составило бы 68% массы самого катализатора. Это значение характеризует теоретическую предельную величину заполнения пор Оказалось, что фактическая предельная величина заполнения С , при которой почти полностью прекращалось дальнейшее коксообразование для разных углеводородов, изменяется в очень широких пределах-от 10 до 50%. На практике ни в одном случае не было достигнуто значение С . Во всех экспериментах измеряемая доступная поверхность в процессе закоксовывания сокращалась до минимума (не более 2 м /г), что o- [c.11]

    Через короткое время катализ затормаживается адсорбцией перекиси а-метилстирола на катализаторе Не лучше, чем мономерный фталоцианин [c.276]

    Дегидрирование других алкилароматических углеводородов. Дегидрирование таких углеводородов, как изопропилбензол, этилнафталин и т. д. менео изучено, чем дегидрирование этилбензола. Тем не менее, предполагается, что большинство ароматических углеводородов, имеющих алкильные группы с двумя или тремя атомами углерода, могут быть с успехом подвергнуты дегидрированию. Так, на катализаторе 1707 изопропилбензол может быть дегидрирован в основном до -метилстирола [49]. [c.209]

    Несмотря на кажущуюся простоту метода получения дифенилолпропана из гидроперекиси изопропилбензола, экономические преимущества его и перспективность использования в промышленности не являются очевидными. Дело в том, что высокие выходы дифенилолпропана достигаются лишь тогда, когда к гидроперекиси добавляют фенол, поэтому полностью избежать стадии разложения гидроперекиси и выделения фенола из полученной массы невозможно. Кроме того, так как фенол берут в большом избытке по отношению к гидроперекиси, только небольшая часть ее не подвергается разложению и, следовательно, преимущества непосредственного синтеза реализуются мало. Недостатком способа является и то, что техническая гидроперекись, используемая для синтеза, содержит весьма реакционноспособные примеси а-метилстирола, ацетофенона, окиси мезитила, диметилфенилкарбинола и др. В присутствии кислотных катализаторов эти примеси конденсируются или реагируют с фенолом с образованием высококипящих продуктов, что приводит к потере фенола и к загрязнению дифенилолпропана. Вследствие этого фенол приходится очищать перед возвращением в цикл. [c.104]


    Дегидрированием алкилароматических углеводородов над твердыми окисными катализаторами получают такие ценные продукты, как стирол, а-метилстирол, дивинилбензол и т. д. Они используются в производстве различных синтетических каучуков и пластмасс. Технологическое оформление процессов дегидрирования этилбензола и изопропилбензола соответственно в стирол и а-метилстирол мало отличается друг от друга. [c.121]

    Равновесная концентрация а-метилстирола выше 90% возможна уже при 520 °С На обоих катализаторах, особенно часто на К-22, проводится периодическая регенерация. Разработаны катализаторы, лишенные указанного недостатка и позволяющие в адиабатических одно- и двухступенчатых реакторах достигнуть конверсии 70 и 90% соответственно. Технологическое [c.737]

    Катализатор индекс 34—1Л2. Используется в процессах дегидрирования алкилароматических углеводородов, в частности изопропилбензола в а-метилстирол и олефинов в диолефины [43, 53]. [c.411]

    Перед использованием в процессе катализатор активируют" в присутствии кислорода воздуха при 550 °С в течение 2 ч. Параметры процесса дегидрирования температура верхнего слоя катализатора — 570 °С объемная скорость поддачи изопропилбензола — 0,5 ч массовое соотношение этилбензол/водяной пар =1 3. При этих условиях выход а-метилстирола составляет 53 и Й3% на пропущенный и разложенный изопропилбензол, соответственно. Ядами для катализатора являются хлор, хлорорганические соединения, сера, аммиак и аминосоединения, мышьяк. Регенерация катализатора проводится паровоздушной смесью. [c.411]

    На первой стадии изопропилбензол окисляется кислородом воздуха с получением гидроперекиси. Процесс проводится в отсутствие катализаторов, а для инициирования реакции окисления к сырью добавляется небольшое количество гидроперекиси. На второй стадии гидроперекись разлагается в присутствии сильной кислоты с образованием фенола и ацетона, а также некоторого количества муравьиной кислоты, а-метилстирола и смолообразных продуктов. [c.184]

    Для дегидрирования кумола применяются те же катализаторы, что и для получения стирола, при практически том же разбавлении водяным паром. В СССР в настоящее время используются катализаторы К-22 и КМС- Поскольку условия термодинамического равновесия реакции дегидрирования для изопропилбензола более благоприятны, чем для этилбензола (см. т. I, гл. 2), а-метилстирол синтезируют при температурах на 80—100 °С ниже, чем дегидрирование этилбензола. При степени превращения 60—70% селективность превышает 90%. Разработаны [c.385]

    Дегидрирование — процесс, сопровождающийся отщеплением водорода от молекул, предназначается для получения непредельных углеводородов из предельных, например бутилена из бутана, бутадиена из бутилена, изоамилена из изопентана, изопрена из изоамилена. Процесс протекает на хромоалюминиевых катализаторах при температуре 530 — 600 °С и давлении атмосферном или ниже атмосферного. В результате дегидрирования из этилбензола получают стирол, а из изопропилбензола — а-метилстирол. [c.620]

    Изопропилбензол на аналогичных катализаторах под действием двуокиси серы дегидрируется в а-метилстирол (селективность 72 %). [c.187]

    Никельс и другие [59] не добились хороших выходов стирола из изопропилбензола. Применяя катализаторы состава 85 AlgOg — 15 r Og и 99 AlgOg — 1 NiO и катализатор 1707 они получили выходы стирола только 1% и метилстирола 20—25% несмотря на достигнутую относительно высокую избирательность ко всем стиролам (порядка 85%). В более жестких условиях они получили от одной седьмой до одной трети от общего количества стиролов преобладающее содержание стирола пад метилстиролом. [c.209]

    Кинетика реакции полимеризации стирола и а-метилстирола, катализируемой ЗпС1 , изучена Пеппером [120] он наблюдал увеличение скорости реакции и молекулярного веса полимера при увеличении диэлектрической постоянной растворителя. Детальное исследование хода реакции в дихлорэтилене показало первый порядок скорости относительно ЗпС1 и второй порядок относительно стирола. Такой результат указывает на то, что реакция инициируется комплексом стирола с катализатором, обрыв же цепи является мономолекулярной реакцией, а также, что присутствие влаги не необходимо для реакции. Возможно, однако, что нри проведении реакции в таких галоидированных растворителях растворитель является сокатализатором при инициировании, например [c.158]

    Каталитическим дегидрированием этилбензола в больших масштабах получают стирол. Условия образования бутадиена из н-бутана или и-бутенов применимы также и для получения стирола. В термическом дегидрировании при температурах свыше 600° С выход стирола колеблется от 50 до 55%, но при использовании катализаторов уже при более низких температурах превращение почти полностью заканчивается [270]. В присутствии инертного рзабавителя (водяного пара, двуокиси углерода, метана, бензола) наблюдается более высокий выход стирола и значительно меньший крекинг углеводородов [271]. Так как катализатор стареет, температура реакции постепенно увеличивается с 600 до 660° С. При превращении за проход около 35—40% общий выход стирола составляет около 90% [272]. Подобным же образом можно дегидрировать и другие алкилбензолы. Так, например, изопропилбензол дает а-метилстирол [273], однако при жестких условиях дегидрирования получается от 15 до 30% стирола [274]. [c.102]


    Проведенные исследования позволили установить характер влияния условий проведения процесса полимеризации на молекулярно-массовое распределение и содержание разветвленных макромолекул и сшитых структур для основных типов каучуков, получаемых методом эмульсионной полимеризации (сополимеры бутадиена со стиролом и сс-метилстиролом) и полимеризацией в растворе под действием комплексных катализаторов (цыс-поли-бутадиен и чыс-полиигопрен) и предложить рациональные пути получения этих каучуков с оптимальными молекулярными параметрами (см. гл. 3, 4). [c.15]

    Методом анионной полимеризации с помощью литийорганических катализаторов осуществлен синтез ряда блоксополимеров, в которых эластомерные блоки (полибутадиена, полиизопрена и др.) чередуются со стеклоподобными блоками (полистирола, поли-а-метилстирола, поли-а-фенилстирола, поливинилтолуола и др.) [1]. Указанные блоксополимеры обладают термоэластопластичными свойствами при условии, что число блоков в молекуле полимера не менее трех, причем крайними являются блоки стеклоподобного полимера. [c.283]

    Пример. В нефтехимической промышленности а-метилстирол получают дегидрированием изопропилбензола в присутствии таких катализаторов, как ZnO—АЬОз или ZnO—AI2O3—СГ2О3. Реакцию проводят в адиабатическом реакторе при температурах 793—863 К и разбавлении сырья водяным паром. Следует определить константы равновесия в области температур 500— 900 К, равновесное превращение изопропилбензола при давлении 1-10 Па, влияние давления на равновесное превращение изопропилбензола и оптимальное отношение воды к изопропил-бензолу с учетом экономики процесса для температуры реакции 793 К. [c.270]

    Наряду со стиролом и водородом при дегидрировании этилбензола образуются такие побочные продукты, как метан, окись и двуокись углерода, этилен, бензол, толуол, ксилолы, изопропил-бензал, а- и р-метилстиролы, дибензил, стильбен, антрацен, флуо-рен и др. Бензол и толуол, как было доказано с помощью меченых -атомов [14], возникают непосредственно из этилбензола, а также и из стирола. Они представляют собой главные побочные продукты, в основном определяющие селективность процесса. Высказывалось немало предположений о том, что реакция образования бензола и толуола является обратимой и что добавки этих углеводородов могут увеличить выход целевого продукта. Однако на практике это приводило лищь к уменьщению производительности и отравлению катализатора сопутствующими примесями. [c.735]

    Для дегидрирования кумола в а-метилстирол используются г катализаторы К-22 и КМС. Процесс протекает п и температурах на 80—100 °С ниже, чем при дегидриро/ании эти Лензола и харак- С теризуется выходами выше 90% даж при конверсии 50—60%. [c.737]

    В отличие от стирола а-метилстирол не склонен к самопроиз- / вольной полимеризации даже при 160—170 °С, однако он чрезвычайно легко окисляется кислородом воздуха в процессе хранения и даже ректификации (вследствие подсосов в систему) и сополи-меризуется со стиролом и винилтолуолами, всегда содержащимися в дегидрогенизате. Поэтому применяемые ингибиторы должны одновременно подавлять полимеризацию и автоокисление. По аналогии с производством стирола в промышленности длительное время применялись лишь такие ингибиторы, как сера и гидрохинон, - совершенно не предотвращающие превращение а-метилстирола в перекисные и карбонильные соединения, концентрация которых в готовом продукте нередко достигала 0,5—1%. Это сводило на нет все усилия по получению мономера высокой степени чистоты (99,5—99,8% основного вещества) за счет улучшения отделения А легкокипящих (стирол, пропилбензолы) и высококипящих (бутил- И бензолы, р-метилстирол) углеводородов. Наличие ацетофенона и У перекисей особенно нежелательно при анионной сополимеризации а-метилстирола, так как указанные соединения разрушают катализаторы. [c.737]

    Р г U d е n В. В., W е b е г М. E., Сап. J. hem. Eng., 48, 162 (1970). Оценка работы трезфазных трубчатых реакторов (с внешней циркуляционной трубой и без нее, при использовании в качестве модельной реакции — гидрирования а-метилстиролй в кумол на палладиевом катализаторе). [c.287]

    Эдии из методов проведения реакции состоит в применении про-точ 50-циркуляционной установки (рис. 107,а), когда выделяющееся гепло снимают в трубчатом реакторе за счет охлаждения его водой. Реакционную смесь по выходе из реактора частично отводят на дальнейшую переработку, но основное количество направляют на рециркуляцию добавляют кислоту-катализатор и в насосе смеши зают с исходным гидропероксидом. При такой системе время ко1 такта лимитируется теплоотводом и является завышенным. Кроме того, рециркуляция смеси ведет к повышенному выходу поГ Очных веществ. Так, на 1 т фенола получается 100—150 кг отводов, в том числе 15—20 кг а-метилстирола, 40—50 кг димера и 1 мол, 5—10 кг ацетофенона, 30 кг кумилфенола и т. д. Хотя оксида мезитила образуется немного, но он существенно затрудняет очистку фенола. [c.373]

    В работе [4] исследовано влияние пульсирующих колебаний реакционного потока на производительность реактора жидкофазного гидрирования а-метилстирола в неподвижном слое катализатора Р(1 на А12О3. По сравнению со стационарными режимами в нестационарных условиях удалось значительно интенсифицировать межфазный обмен растворенного водорода (на 80% в наилучших условиях, определяемых оптимальной амплитудой и частотой колебаний), что ощутимо увеличило степень превращения стирола в кумол. [c.125]

    Г Реакторы со сплошным слоем катализатора, несекционированные (так называемые адиабатические) широко используются в нефтехимических произв6 (-ствах. В таких аппаратах проводят как реакции в кинетической или переходной областях (например, гидрокрекинг, риформинг — табл. 3.2, изомеризация парафинов, прямая гидратация этилена, дегидрирование этилбензола в стирол и изопропилбензола в а-метилстирол), так и реакция в диффузионной области (например, окисление спиртов в альдегиды и кётоны). [c.125]

    Олигомеризация стиролов и метилстиролов. Димеризацию и циклодимеризацию стирола, а- и р-метилстиролов удалось осуществить в присутствии оснований. Состав образующихся щродун-тов зависел от спроения исходного стирола и от используемого катализатора. [c.166]

    Фенол со стиролом и а-метилстиролом в отличие от олефинов в присутствии катализатора ВРз-0(С2Н5)2 и 75%-ной Н3РО4, насыщенной фтористым бором, при температуре от 18 до 100 С образует только фенольного типа соединения. При этом со стиролом получаются моно- и диарилалкилзамещенные фенола, а с [c.178]

    Алкилирование протекает таким образом, что основными продуктами реакции являются моноалкилпроизводные алкилфениловых эфиров. Причем, при алкилировании аиизола пропиленом, бутеном-2 и циклогексеном радикал ориентируется главным образом в орто-положение, а в реакции с пентеном-2, и а-метилстиролом — в пара-положение. Подобно фенолам, но в отличие от реакции алкилирования ароматических углеводородов, в данном случае комплексы ВРз"НзР04 и ВРз.О(С2Н5)2 хорошо смешиваются с алкилфениловыми эфирами и продуктами алкилирования, смесь длительное время не расслаивается, поэтому катализаторы могут быть использованы однократно [68—72]. [c.180]

    Анизол с а-метилстиролом образует и-метоксидифенилдиме-тилметап. Реакция протекает менее энергично, чем со стиролом. Более эффективным катализатором для данной реакции оказал- [c.184]

    Применяя совершенно различные синтезы, можно получать разнообразные смеси изомеров. Так, например, реакция толуола с ацетиленом, проводимая в присутствии сернокислотного раствора сульфата ртути как катализатора, дает дитолилэтан. Последний вместе с избытком водяного пара нагревают при 400—600° над каолином, получая 1 моль толуола и 1 моль смеси метилстиролов, состоящей из 32% о-метилстирола, 3% л-метил-стирола и 65% п-метилстирола [44]. Такой технический метилстирол обра- [c.262]

    Новые возможности получения ароматических углеводородов из парафинов представляет процесс каталитического крекинга катарол (гл. 7, стр. ПО). Этот процесс проводят над медным или медножелезным катализатором при 630—680° и атмосферном давлении. При этом около 40—50% вводимого сырья превращается в жидкие продукты, состоящие почти целиком из ароматических углеводородов. Крекинг парафинистой нафты (т. кип. 113—183°) приводит к 37%-ному выходу жидких продуктов, которые почти наполовину состоят из ароматических g-, С -и Св-углеводородов. Фракция g-углеводородов содержит этилбензол и стирол. В следующей фракции присутствуют инден и а-метилстирол. Из более высококипящих фракций выделены в существенных количествах весьма чистые нафталин, оба изомера метилнафталина, несколько изомеров диметилнафталина, дифенил, аце-нафтен, флуорен, антрацен, пирен и хризен [54]. Ароматические продукты, получающиеся при этом каталитическом крекинге, весьма напоминают по своему качественному составу и в меньшей степени по своему количественному составу ароматические продукты коксования каменного угля — процесса, который проводится при гораздо более высокой температуре. [c.267]

    Гидроперекись изопропилбензола является также источником для получения а-метилстирола. Под действием ЫаОН как катализатора гидроперекись превращается в диметилфенилкарбинол, который затем дегидратируют над АКзОд при 320° в а-метилстнрол 33]  [c.212]

    Несимметричный ди-(4-метилфенил)этан и воду [молярное соотношение вода углеводород=(70 + 2) 1] пропускают над синтетическим алюмо-силикатным катализатором (А12О3 5Ю2= 1 1) при 500 + 10° и скорости подачи углеводорода 0,9 объема на 1 объем катализатора в час (время контакта 0,08 - - 0,01 сек.). Превращение несимметричного ди-(4-метилфенил)-этана в легкие продукты составляет 59% содержание 4-метилстирола в этих продуктах — 48% (теоретическое содержание 51,4%) [49]. В качестве катализатора можно применять глину [51]. [c.39]

    Дальнейшая интенсификация действующих производств бутадиена предусматривается за счет перехода на более эффективные катализаторы на первой и второй стадиях, а рост выпуска бутадиена будет обеспечиваться самым экономичным путем — переработкой бутилен-бутадиеновой фракции пиролиза бензина в этилен. Б связи с организацией производства сополимерных каучуков озникла необходимость создания крупнотоннажного производства стирола, а-метилстирола, нитрила акриловой кислоты. В последнее время все возрастающее значение приобретают мономеры для синтеза каучуков специального назначения. [c.10]


Смотреть страницы где упоминается термин Катализаторы метилстирола: [c.232]    [c.289]    [c.355]    [c.583]    [c.65]    [c.168]    [c.170]    [c.179]    [c.179]    [c.186]    [c.646]    [c.38]    [c.18]    [c.2]    [c.110]   
Линейные и стереорегулярные полимеры (1962) -- [ c.284 ]

Линейные и стереорегулярные полимеры (1962) -- [ c.284 ]




ПОИСК





Смотрите так же термины и статьи:

В. И. С и г о в а. Катализаторы для синтеза стирола и метилстирола

Метилпентен полимеризация катализаторами Метилстирол, полимеризация

Метилстирол

Серная кислота как катализатор полимеризации метилстирола

Сополимеризация алфиновыми катализаторами, бутадиен метилстирол

Хлористый алюминий как катализатор метилстирола



© 2025 chem21.info Реклама на сайте