Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Ленгмюра поверхности

    Реакции, протекающие только на поверхности. Скорость реакции в этом случае пропорциональна величине поверхности или количеству катализатора. Такие реакции можно разбить на две категории. В первой все реакции протекают между частицами, адсорбированными на поверхности. Их часто называют реакциями, протекающими по механизму Ленгмюра — Хиншельвуда. Ко второй категории относятся те реакции, которые протекают на поверхности межДу адсорбированными частицами и частицами из гомогенной фазы. Их иногда называют реакциями, протекающими по механизму Рай-дила. Различия между этими типами реакций не всегда ясны. [c.533]


    Это выражение известно как изотерма Ленгмюра . Из этого выражения следует, что при достаточно высоких давлениях [(А) > К2, — поверхность становится насыщенной молекулами А (9 == 1), тогда как нри низких давлениях [(А) < iiz, J число занятых активных центров поверх- [c.537]

    Обычно к уменьшается, а п растет с ростом температуры. Для изотермы Ленгмюра теплота сорбции не меняется с увеличением числа занятых активных центров поверхности. Изотерма Фрейндлиха зависит от энтальпии сорбции, которая возрастает логарифмически с увеличением числа занятых [c.539]

    В случае однородной поверхности и при установлении адсорбционного равновесия для вещества поверхностную концентрацию связывают с парциальными давлениями компонентов рд. уравнением Ленгмюра  [c.170]

    Рассмотрим выражение для величины равновесной адсорбции 0 для одного газа. При низком давлении (Ра) величина ЬРа < 1 и 0 = ЬРа, т. е. количество адсорбированного вещества А пропорционально его давлению в газовой фазе. При Рд 1/Ь ЬРа > 1 и 0 = 1, т. е. вся поверхность покрыта адсорбированными молекулами.. При средних давлениях уравнение Ленгмюра может быть аппроксимировано уравнением Фрейндлиха  [c.147]

    Адсорбционные явления, начиная с физико-механической адсорбции на поверхности раздела фаз и кончая капиллярной конденсацией, представляют сложную совокупность физических, химических и физико-химических процессов. В настоящее время нет единой теории, объединяющей все частные случаи сорбции на общей основе. Теория сорбции подразделяется на молекулярную, сорбцию Ленгмюра, основанную на валентной природе адсорбционных сил электрическую теорию адсорбции полярных молекул (теорию зеркальных сил, квантовомеханический учет дисперсионной составляющей адсорбционных сил) капиллярную конденсацию полимолекулярную адсорбцию Брунауера — Эммета — Теллера, теорию Юра — Гаркинса [25, 44, 69]. [c.66]

    Различные участки (атомы, молекулы) поверхности твердого тела могут быть энергетически неравноценны. Это обнаруживается, например, при опытной проверке уравнения изотермы Ленгмюра. Если это уравнение представить в виде [c.427]

    Если на поверхности имеются адсорбционные места с разными значениями теплот адсорбции, то изотерма адсорбции имеет более сложный вид, чем изотерма уравнения Ленгмюра, и следует писать  [c.428]

    Особенность кинетических закономерностей гетерогенно-каталитических реакций (в отличие от реакций в объеме) состоит в том, что устанавливается зависимость скорости реакции от парциального давления реагентов в объеме газа (которое измеряется на опыте), хотя фактически они определяются количествами адсорбированных веществ. Поэтому при выводе кинетических уравнений гетерогеннокаталитических реакций нужно знать адсорбционные свойства всех газов в газовой смеси на поверхности катализатора, т. е. изотерму адсорбции. Полагаем, что справедлива изотерма адсорбции Ленгмюра. [c.431]


    БЭТ. В этой теории дополнительным допущением к тем, которые были положены в основу вывода уравнения изотермы Ленгмюра, является представление об образовании на поверхности адсорбента последовательных комплексов адсорбционных центров с одной, двумя, тремя п так далее молекулами адсорбата. [c.119]

    Макропористые тела имеют поры с радиусом больше 100,0— 200,0 нм. Удельная поверхность макропористых тел находится в пределах 0,5—2 м /г. Такие поры по сравнению с адсорбированными молекулами выглядят как ровные поверхности, и поэтому для макропористых тел применима обобщенная теория адсорбции Ленгмюра. В адсорбентах и катализаторах макропоры играют роль транспортных каналов, и адсорбцией в них можно пренебречь. [c.131]

    Уравнение (HI. 124) также является уравнением состояния двухмерного газа. В нем, как и при выводе уравнения Ленгмюра, учитываются конечные размеры молекул адсорбированного веще-пва и предполагается отсутствие их взаимодействия на поверхности. Уравнение (III. 124) аналогично уравнению Ваи-дер-Ваальса с одной постоянной Ь для трехмерного газа  [c.160]

    Аналитическим выражением изотермы мономолекулярной адсорбции при более высоких концентрациях и на ровной поверхности является уравнение изотермы Ленгмюра  [c.38]

    Уравнение Ленгмюра (II. 2) и уравнение БЭТ (И.З) широко используются для определения удельной поверхности адсорбентов, катализаторов и других дисперсных систем. Удельная поверхность 5уд связана с емкостью монослоя Лм соотнощением [c.38]

    Уравнения Гиббса, Генри, Ленгмюра и Шишковского по экспериментальным данным о поверхностном натяжении растворов позволяют рассчитать следующие величины и характеристики адсорбцию ПАВ на межфазной границе раствор — воздух и раствор — твердый адсорбент толщину адсорбционного слоя линейные размеры молекул ПАВ предельную адсорбцию поверхностного мономолекулярного слоя удельную поверхность твердого адсорбента, катализатора, а также исследовать свойства поверхностных пленок. [c.39]

    С ростом концентрации раствора число молекул ПАВ в адсорбционном слое увеличивается. Прн некоторой концентрации раствора может образоваться предельно насыщенный адсорбционный слой, так называемый частокол Ленгмюра . В этом случае поверхностный слой отвечает конденсированной пленке и поверхность воды оказывается сплошь покрытой углеводородными участками молекул ПАВ. Поверхностное натяжение растворов при этих концентрациях приближается к значению поверхностного натяжения самих поверхностно-активных веществ на границе с воздухом. [c.41]

    Определив экспериментально емкость монослоя Ах, по формуле (П. 4), можно рассчитать удельную поверхность адсорбента 5уд, г. е. поверхность, приходящуюся на единицу массы адсорбента. Для этого необходимо знать площадь 5о, занимаемую одной молекулой адсорбата в насыщенном адсорбционном слое на границе раздела фаз. Согласно исследованиям Ленгмюра и Гаркинса площадь, занимаемая одной молекулой большинства одноосновных жирных кислот и спиртов, составляет 0,2—0,3 нм . [c.42]

    Основываясь на взглядах Брэгга относительно природы кристаллических поверхностей, Ленгмюр [40] создал новую теорию поверхностных явлений, которая не только объяснила результаты его собственных исследований в этой области, но была успешно применена в ряде других случаев и се11час является общепризнанной. Согласно Ленгмюру, поверхность твердого тела мо кно рассматривать состоящей из центров, с которыми могут сталкиваться молекулы из менее плотно гомогенной фазы и на которых они могут адсорбироваться. По теории межмолекулярн . Х сил эти места отвечают минимуму энергии и расположен , через определенные интервалы на всей поверхности, отражая внутреннее строение самого твердого вещества. Прп достижении равновесия между молекулами, адсорбированными на поверхности и находящимися в объеме, только некоторая доля 0 центров адсорбции занята адсорбированными молекулами. Если число этих молекул обозначить через Л , то [c.312]

    Ленгмюр и впоследствии другие исследователи [9] выдвигали ряд причин, по которым можно было ожидать отклонение от этого простого уравнения. Одной из причин является то, что поверхность катализатора не гомогенна, а состоит из областей с различной сорбционной способностью. Можно ожидать, что в результате такой неоднородности получаемая из экспериментальных данных изотерма адсорбции представляет собо11 некую суммарную кривую, отражающую брутто-процесс в целом и являющуюся результатом [c.538]

    Кривая 1 — для сложной изотермы Ленгмюра гетерогенная поверхность, уравнение (XVII.3.5) [c.538]

    Кривая 2 — для простой изотермы Ленгмюра гомогенная поверхность, уравнение <ХУ11.3.3). [c.538]

    Изотерма адсорбции такой поверхности для наименее активных центров поверхности Км12) при большом давлении приближается по виду к изотерме адсорбции Ленгмюра. При низком давлении, (А) < Ко < Км, для наиболее сильно связующих активных центров поверхности Ко сорбция протекает почти линейно. Для значительного диапазона давлений частиц А, а именно Км > (А) > Ко, вид зависимости для изотермы будет представляться дробной степенной зависимостью величины 0 от (А). Такая зависимость эмпирически использовалась в течение некоторого времени она известна как изотерма Фрейндлиха [c.539]


    Если применить уравнение Ленгмюра для случая, когда активные центры поверхности заняты слабо, то концентрация адсорбированных частиц будет пропорциональна давлению спирта [см. уравнение (XVII.3.3)]  [c.541]

    Отметим, что экспериментальная энергия активации, согласно последнему уравнению, равна Еехр = Еi + AH s, где АЯз — теплота сорбции спирта (отрицательная величина) на поверхности. Если изотерма Ленгмюра выполняется в широком диапазоне давлений, то следует ожидать, что при более высоких давлениях или для катализаторов, обладающих более сильной < орбционной способностью, активные центры поверхности будут насыщены [c.541]

    Представленные данные, по-видимому, хорошо согласуются с об.ъясие-нпем на основе простейшей изотермы Ленгмюра. Однако это объяснение ни в коей мере не является обш им. Более часто в широком диапазоне давлений можно найти, что данные нельзя описать с помощью реакции простого порядка или простой изотермы Ленгмюра. В этнх случаях приходится но только учитывать неоднородность поверхности, но и использовать белое сложные уравнения адсорбции. Это обычно позволяет описать экспериментальные данные с помощью простого химического механизма. Однако сложность конечных выражений и большое число параметров сильно усложняют объяснение кинетики реакции. В связи с этим возникает необходимость раздельного получения данных по изотермам и кинетике реакций. Трудност1> этой задачи является одним из главных нренятствип на нути выяснения механизма каталитических реакций. [c.546]

    Темкин и сотр. [22] подошли к решению вопроса с помощью метода, аналогичного рассмотрению сложной изотермы Ленгмюра, чтобы объяснить сложную кинетику раСпадя КНз на поверхности железа. Теоретическое исследование неоднородности поверхности было проведено в работе [23]. [c.546]

    Вопрос о том, из чего состоит активная поверхность при любой данной температуре, является сложным. Оп пе монсет быть решен па основе простой изотермы Ленгмюра. Как мы уже отмечали, в случае Иг наблюдаготся большие изменения в теплоте сорбщш. Эти изменения в свою очередь могут сильно изменить температуру активной поверхности и, таким образом, привести к аномальной зависимости скорости реакции от давления. Эти важ1ше детали могут быть выяснены только путем прямого непосредственного определения уравнения изотермы адсорбции. [c.549]

    Каталитические реакции можно рассматривать по радикальному механизму, согласно которому при активированной адсорбции происходит расщепление молекулы реагента на радикалы. При гетерогенном катализе по модели Ленгмюра свободные радикалы, мигрируя по поверхности катализатора, образуют нейтральные молекулы продукта, которые десорбируются. В случае гетрерогенно-гомогенного катализа образующиеся радикалы переходят в свободный объем, где и продолжается цепная реакция и катализатор являйся возбудителем реак- [c.89]

    Первое теоретическое уравнение, описывающее связь между количеством адсорбированного газа и его равновесным давлением при постоянной температуре, было предложено Ленгмюром [39]. При этом предполагалось, что адсорбция ограничена образованием мономолекулярного слоя и радиус действия поверхностных, сил очень мал, а потому адсорбироваться могут только те молекулы, которые ударяются о чистую поверхность. Молекулы, ударяющиеся об уже адсорбированные молекулы, упруго отражаются и возвра- [c.292]

    Большинство изотерм адсорбции паров имеет форму изотермы типа II, по которой в настоящее время, используя теорию Брунау-эра, Эммета и Теллера (БЭТ), можно определять удельную поверхность адсорбирующего твердого тела [40—43]. Изотермы типа II характеризуют полимолекулярную адсорбцию, поэтому утверждение Ленгмюра об ограниченности адсорбции образованием мономолекулярного слоя было отвергнуто. По теории полимолекулярной адсорбции предполагают, что молекулы паров адсорбируются поверх уже адсорбированных молекул. При этом сохраняется ленг-мюровская концепция, которую Брунауэр, Эммет и Теллер распространили на второй и последующие адсорбированные слои молекул. [c.293]

    Для объяснения механизма процесса адсорбции предложены поверхностная теория по Ленгмюру н объемная теория по Поляни. Адсорбция молекул на поверхности адсорбента по Ленгмюру осуществляется на энергетически равноценных активных ее центрах с образованием мономолекулярного слоя. Недостаток этой теории в ее неприменимости к процессам, осложненным адсорбцией в микроиорах и капиллярной конденсацией. [c.55]

    Наиболее теоретически ра работаннон является модель ССЕ с ядром из поры, различные состояния которой приведены на рис. 10. Формирование адсорбционно-сольватного слоя происходит самопроизвольно за счет поверхностных сил ядра с выделением при этом обычно тепла. Поверхностные силы при физической адсорбции имеют ту же природу, что и силы межмолекулярного взаимодействия. В настоящее время, наиболее признанной, позволяющей аналитически описать -образную форму изотермы адсорбции является теория БЭТ (Брунауэр— Зммет — Теллер). По своей сути адсорбция по Ленгмюру соответствует модели ССЕ, когда / /л- О, а по Поляни — когда /г/г оо (рис. 11). Адсорбция при наличии высокодисперсных пор в адсорбенте сопровождается фазовым переходом — капиллярной конденсацией. Воздействуя различными способами на пористость твердых тел в процессе их получения и существенно изменяя условия нх применения путем варьирования давления, температуры и введения различных добавок, удается регулировать высоту межфазного слоя И на поверхности пористого тела (рис. 12). [c.77]

    Рассмотрим кратко влияние этих факторов иа адсорбцию на границе ядро — дисперсионная среда. Если дисперсная фаза (например, асфальтены) и диснерсионная среда (парафины) ре.зко различаются по полярности, взаимодействие между ними незначительно. В этом случае элементы структуры дисперсной фазы находятся в состоянии, аналогичном модели ССЕ по Ленгмюру (гтах, Лт ,,) система склонна к расслоению. Поверхности с высокой поверхностной энергией легко адсорбируют алканы с образованием монослоя с низкой поверхностной энергией. Введение в систему аренов или других аналогичных добавок изменяет обстановку. Изменения наступают в результате влияния растворения на баланс сил в системе и в конечном счете на размеры гик ССЕ. Поскольку парные взаимодействия между молекулами алканов и аренов слабее, чем между молекулами аренов, то с поверхности ядер ССЕ удаляются алканы. В итоге формирую я активные ССЕ (с повышенной поверхностной энергией). Активные ССЕ обладают нескомиенсированной поверхностной энергиеС , что является движущей силой для роста размеров ССЕ. Все эти стадии схематически выглядят так  [c.78]

    Фундаментальным вкладом в учение об адсорбции явилась теория Ленгмюра. Эта теория позволяет учесть наиболее сильные отклопеппя от закона Генри, связанные с ограниченностью адсорбционного объема или иоверхности адсорбента. Ограниченность этого параметра приводит к адсорбционному насыщению поверхности адсорбента по мере увеличения концентрации распределяемого вещества. Это положение является основным в теории Ленгмюра и уточняется следующими допущениями  [c.114]

    Для гюлучения уравнения изотермы обратимся к основному положению теории Ленгмюра. Примем, что при адсорбции происходит квазихимическая реакция между распределяемым компонентом и адсорбционными центрами поверхности  [c.114]

    Все рассмотренные до сих пор уравнения справедливы для мономолекулярной адсорбции на адсорбенте с энергетически эквивалентными адсорбционными центрами. Однако реальные поверхности твердых тел, как правило, не обладают таким свойством. Существенным приближением к реальным условиям является рассмотрение возможных распределений адсорбщюнных центров поверхности адсорбента по энергиям. Приняв линейное распределение адсорбционных центров по энергиям (теилотам адсорбции), М. И. Темкин, используя уравнение Ленгмюра, получил следующее уравнение для средних степеней заполненпя адсорбента  [c.117]

    Если адсорбция подчиняется уравнениям Геири или Ленгмюра, т. е. константы равновесия адсорбции в этих уравнениях не зависят от степени заполненпя поверхности адсорбента, то стандартная энергия Гиббса адсорбции может быть рассчитана по уравнению, справедливому для химических реакций  [c.122]

    Ранее отмечалось, что размеры ыикропор соизмеримы с разме рами адсорбируемых молекул. В отлпчпе от ленгмюровского моиослоя в микропорах молекулы, расположенные главным образом вдоль поры, взаимодействуют друг с другом подобно взаимодействию прп образовании полимолекулярного слоя в отличие же от последнего большинство молекул в микропорах находится в непосредственном контакте со стенками поры. Поэтому ни теория БЭТ, ИИ теория Ленгмюра для процесса адсорбции микропористыми телами не применимы. Имеется в виду, конечно, не формальное применение уравнений, а, главным образом, получение правильных значений постоянных параметров уравнений, имеющих определенный физический смысл. В микропорах происходит объемное заполнение адсорбционного пространства, и поэтому оказалось более удобным взять за основной геометрический параметр адсорбента не поверхность, а объем микропор. [c.140]

    Исследования показали, что вещества с одной и той л<е функциональной группой независимо от длины радикала имеют одинаковые значения величин и ш. Например, для всех жирных кислот U = 0,205 нм . Независимость m от длины радикала позволила сделать выводы о характере расположения молекул на поверхности. Если на молекулу ПАВ приходится значительная площадь и она свободно перемещается по поверхности жидкости, то ее углеводородный радикал, как правило, лежит на поверхности. В сплошном мономолекуляриом слое углеводородные радикалы ориентируются вертикально, образуя так называемый частокол Ленгмюра . Ленгмюр впервые установил этот факт, который позволил вычислить толщину поверхностной пленки б. Объем пленки, занимающей единицу поверхности, численно равен б. В то же время этот объем равен произведению максимальной адсорбции Лоо на мольный объем ПАВ V . Поэтому [c.163]

    По истечении определенного времени в системе адсорбент — водный раствор ПАВ устанавливается равновесие между количеством А молекул ПАВ, перешедших на поверхность сорбента, и их объемной равновесной концентрацией с. Это равновесие может быть описано уравнением Ленгмюра (П.2), при этом емкость монослоя А оо ОТВ6ЧЭ0Т прб-дельной адсорбции. Для более точного определения величины Лоо предпочтительнее использовать уравнение Ленгмюра в линейной форме  [c.41]


Смотреть страницы где упоминается термин Ленгмюра поверхности: [c.10]    [c.538]    [c.540]    [c.542]    [c.455]    [c.81]    [c.44]    [c.427]    [c.118]    [c.118]    [c.158]   
Адгезия жидкости и смачивания (1974) -- [ c.287 ]




ПОИСК





Смотрите так же термины и статьи:

Ленгмюра



© 2025 chem21.info Реклама на сайте