Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Уранил, силикат

    Прямое определение Sb в сочетании с рядом других элементов производится в самых разнообразных материалах, в том числе в алюминии [54, 55, 1134, бериллии и его соединениях [305, 1297], боре [778, 11171 и фосфиде бора [26], ванадии и его окислах [234, 491, 1117], висмуте [809, 909, 1134], вольфраме и его соединениях [195, 739, 795, 1265], вольфрамовых рудах [1480], германии и его соединениях [559, 634, 905], горных породах [386, 730, 1182, 1240, 1336, 1443, 1599], графите и углероде [235, 397, 612], жаропрочных и тугоплавких сплавах [176, 177, 379, 1278, 1593], железе [425, 1134, 14411, железных рудах и минералах [198, 386, 636, 971, 1336], сталях [176, 546, 1278, 1441, 1593] и чугуне [61, 274, 546, 1250], золоте [404, 754, 909, 1095] и его сплавах [196, 389,390, 1167], индии [1168, 1308] и сплавах на его основе [814, 815, 1267], иттрии и его окислах [234, 272], алюмоиттриевом гранате [82], кадмии [598, 599, 1134] и кадмиевых сплавах [819], кобальте [60, 153, 1134], кремнии [252, 1619], кварце [154], карбиде кремния 109, 110, 288, 789, 790, 1353], кремниево-медных сплавах 594], силикатах [1586], технических стеклах [612, 1579], меди 129, 482, 964, 997, 1176, 1599, 1609, 1645, 1654], медных сплавах 96, 482, 1048, 1188, 1457,1463, 1566], окиси меди [199], продуктах медеплавильного производства [3601 и медных электролитах [1298, 1600], молибдене и его соединениях [104, 237, 308, 795, 1325, 1347, 1443], мышьяке [472, 1134], никеле и никелевых сплавах [486], ниобии и его окислах [49, 972], олове [582, 744, 782, 812, 900, 1684] и его сплавах [1210, 1494, 1495], полупроводниковых материалах [668, 678, 806, 1298, 16841, припоях [210, 1101], свинце [481, 534, 908, 1154, 1155,1193, 1543,1655], свинцовых сплавах [126, 871], рудах [53, 667, 806, 1143] и пылях [811], РЗЭ и их окислах [234, 353], селене [154, 155, 499, 747, 818, 1134], селениде ртути [715], сере [189, 1134], серебре [388, 390, 391, 909, 1598], хло- иде серебра [1362], стеклоуглероде [397], сульфидных рудах 638], тантале [237], теллуре [156, 591, 592, 1134, 1613], теллуровом баббите [1656] и теллуриде свинца [342], типографских сплавах [323], титане и двуокиси титана [288, 306, 1262], тории и его окислах [272], уране [1447], окислах урана [878, 1182, 1240] и урановых рудах [1443], ферросплавах [792, 793], фосфоритах [879], хроме [555, 729, 792] и его окислах [54, 55, 571], цинке [976] и цинковых рудах и минералах [1142], цирконии [679] и двуокиси циркония [1368], производственных растворах [205, 882, 1290, 1323, 1324, 1483], сточных и природных водах [429], азотной, серной, соляной, уксусной, фтористоводородной и бромистоводородной кислотах [111, 121, 407, 552, 574, 10081, воздушной пыли [121. [c.81]


    Эффективность отделения урана от меди, никеля, цинка и других элементов, образующих комплексные аммиакаты, в сильной мере зависит от их количества, вследствие чего полное отделение от указанных элементов достигается только после двух- или трехкратного переосаждения. Осадки, выпадающие из растворов, содержащих фосфаты, ванадаты, бораты и силикаты, как правило, загрязняются ими, и для полного их отделения также необходимо пере-осаждение. Большинство же других элементов полностью или частично осаждаются гидроокисью аммония вместе с ураном 1709], и в их присутствии отделение урана без применения соответствующих маскирующих комплексообразующих веществ не может быть достигнуто. [c.263]

    Окисление аммиака Платина или хром. Активность растет в последовательности железо, стронций, уран, марганец, церий, молибден, вольфрам, хром Пуццолан (силикат вулканического происхождения) 308. 2  [c.456]

    Богатые торием минералы встречаются редко, и типичные их образцы содержат в среднем до 4% ТЬ. Основным промышленным источником получения тория является монацитовый песок, который представляет собой смесь фосфатов тория и редкоземельных элементов с примесью переменных количеств кремнийсодержащих соединений, железа, алюминия, магния и других элементов. В значительно меньших количествах торий встречается в виде торита (силиката тория) и торианита (окиси тория, содержащей редкоземельные элементы и уран). [c.496]

    Фтористоводородная кислота расходуется для травления стекла и удаления песка с металлического литья, для разложения силикатов в химическом анализе, в атомной технике, для получения ир4, из которого далее получают металлический уран и UFe (используемый для выделения изотопа U), а также для получения различных фторидов в технологии редких элементов (Nb, Та и др.). . . [c.472]

    Описан газохроматографический метод, основанный на разделении производных триметилсилана [14]. В некоторых случаях возможно ионообменное отделение мешающих ионов, предшествующее спектрофотометрическому определению силиката [15]. Кремневую кислоту отделяют от сопутствующих элементов, включая железо, алюминий и уран, пропуская раствор через колонку с катионитом, а затем со слабоосновным анионитом [16]. При этом а-форма кремневой кислоты не задерживается. Предварительно - и у-форму кремневой кислоты необходимо перевести в а-форму. Ионный обмен применяют также для предварительного концентрирования силиката. Показано [17], что эффективность разделения повышается в присутствии HF, поскольку образующийся фторсиликат лучше задерживается анионитом. Затем фторсиликат элюируют борной кислотой. [c.190]


    Уже при жизни Клапрот считался одним из самых выдающихся европейских химиков-аналитиков. Он усовершенствовал метод разложения силикатов путем сплавления их с едким кали в серебряном тигле, а также ряд других аналитических методов. С помощью своего экспериментального искусства Клапрот открыл несколько элементов, которым он дал употребляемые и сегодня названия уран, цирконий, титан, хром, теллур . Некоторые из них он смог получить, правда, только в виде соединений. [c.116]

    Перекись водорода образует желтую окраску с солями урана (VI) в растворе карбоната натрия или аммония. Реакция не особенно чувствительна, однако иногда ее можно применить к фильтрату после осаждения карбонатом натрия или же после сплавления с ним. На этой реакции основан метод определения урана в силикатных породах 1. Предел чувствительности такого метода лежит приблизительно при 0,01% урана. Влияние солей хрома (VI) можно компенсировать, помещая аликвотную часть анализируемого раствора в контрольную кювету фотоколориметра. Соединения молибдена (VI) и ванадия (V) также дают с перекисью водорода желтоватую окраску, однако последняя значительно менее интенсивна, чем образуемая ураном. Соли церия (III, IV) образуют интенсивную желтую окраску с перекисью водорода в карбонатном растворе (стр. 511). Фториды и фосфаты в малых количествах не влияют, однако в больших количествах (около 0,1 г аммониевой соли в 50 мл раствора) уменьшают интенсивность окраски. Силикаты практически не влияют. [c.493]

    Фтористоводородная кислота расходуется для травления стек-ла и удаления песка с металлического литья, для разложения силикатов в химическом анализе, в атомной Технике для получения LIF4, из которого далее получают металлическ+1Й уран и UFe (не- [c.472]

    Металлы ПА-подгрунпы в природе встречаются в составе многих силикатов, алюмосиликатов, карбонатов, хлоридов. Mg и Са широко распространены в природе, Sr и Ва мало распространены, Ве — редкий элемент, Ra в незначительных количествах сопутствует урану. [c.260]

    Ряд авторов определяет сумму алюминия и железа и вводит поправку на последнее после определения его в аликвотной части раствора [369, 567, 623, 751]. Метод титрования с дитизоном описан для определения алюминия в сталях, в металлическом уране и его сплавах [833, 1091], в цементе [623], в силикатах и горных породах [223а, 557, 567, 707, 751, 1244, 1288], в кислотных водах [639, 654] и в других материалах. [c.71]

    Некоторые твердые вещества коры также реакционноспособны. Урану (U) и калию (К), элементам, часто встречающимся в гранитных породах, свойственна нестабильность из-за их радиоактивности (см. вставку 2.6). Радиоактивный распад изотопов урана с образованием газа радона (Rn) может быть опасным для здоровья людей, живущих в районах с гранитной материнской породой (вставка 3.2). Некоторые минералы стабильны только в определенных условиях температуры и давления. Например, силикаты, образующиеся глубоко в коре при высоких температуре и давлении, становятся неустойчивыми, когда попадают на поверхность земли в процессе выветривания. Минералы приспосабливаются к новым условиям, чтобы вновь приобрести устойчивость. Приспособление может быть быстрым (минуты) для растворимых минералов, например галита (хлорид натрия, Na l), растворенного в воде, или крайне медленным (тысячи или миллионы лет) при выветривании силикатов. [c.70]

    Газ радон (Нп) является продуктом радиоактивного распада урана (У), элемента, присутствующего в оксидах (например, уранините — УОз) и в виде примеси в силикатах (например, цирконе — 2г3102) и фосфатах (например, апатите — Саб(Р04)з (ОН, Р, С1)) земной коры. Эти минералы часто встречаются в гранитных породах, но бывают также в других породах, осадках и почвах. Уран распадается до радия (Ра), который в свою очередь распадается до радона (Нп) (см. вставку 2.6). Изотоп 222рп существует всего несколько дней перед тем, как распадается, но если поверхностные породы и почвы проницаемы, то у этого газа есть время мигрировать в пещеры, рудники и здания. Здесь радон или продукты его радиоактивного распада может вдыхать человек. Первичные продукты его распада, изотопы полония Ро и вро, не газообразны и прилипают к частичкам в воздухе. Когда их вдыхают, они оседают в бронхах легких, где распадаются в конце концов до стабильных изотопов свинца (РЬ), испуская частицы а-излучения во всех направлениях (см. вставку 2.6), включая выстилающие бронхи клетки. Излучение вызывает мутацию клеток и в конце концов рак легких. Отметим, что в Британии радон, по оценкам, вызывает рак легких в одном случае из 20, гораздо более серьезной причиной является курение. [c.71]

    Фотометрические методы определения мышьяка в виде мышья-ковомолибдеповой сини находят широкое применение. Они используются для определения мышьяка в его соединениях [529], железе, чугуне и стали [48, 540, 666, 698, 773, 785, 790, 885, 917, 943, 949, 952, 996, 1131-1133, 1147], ферросплавах [217, 702, 703, 1203], меди и медных сплавах [158, 195, 197, 216, 515, 562, 815, 886, 952, 1043, 1133, 1209, 1210], рудах и продуктах медного и свинцово-цинкового производства [21, 81], железных рудах [652, 822, 949, 1108], свинце [158, 264, 627, 695, 886, 926, 952, 990, 1133], серебре и его сплавах [1070], Вольфраме и его рудах [1203], олове [307, 585, 661, 1208], сурьме [91, 197, 198, 264, 284, 837, 886, 894, 952, 956], висмуте [265, 764], цинке [158, 627, 926, 952], ниобии и ванадии [284], галлии [284, 2881, индии [284, 289, 430], таллии [284, 287], кремпии [284, 872], германии ]б99, 700, 872], селене [637, 1016, ИЗО], теллуре [758], хроме и его окислах [198, 216], алюминии [144], кадмии [158], олове [886], молибдене и его окислах [459], никеле [402, 562], боре [893], уране [661, 760, 849, 928], минералах [415, 869, 994], пиритах и пиритных огарках [302, 491], фосфорной [940, 941], азотной [892], серной [939] и соляной [197, 452] кислотах, природных водах [785, 942, 993], дистиллированной воде [452], фосфатах [942] и фосфорсодержащих продуктах [980, 1091], силикатах и силикатных породах [869, 942, 964, [c.61]


    Метод пламенной фотометрии широко применяется в аналитической практике для определения кальция при клинических анализах крови [22,166,171,213, 561, 784, 1649] и других биологических объектов [482, 561, 1520], при анализе почв [226, 428, 467, 969], растительных материалов [7, 225, 466, 993, 1522], сельскохозяйственных продуктов [52, 306], природных вод [15851, морской воды [594, 791]. Метод находит применение при определении кальция в силикатах [67], глинах [6, 59], полевом шпате [637], баритах [67], рудах [164, 1136, 13981, а также в железе, сталях, чугунах [326, 1149], ферритах [949], хромитовой шихте [70], основных шлаках [1045], мартеновских шлаках [988], доменных шлаках [1510], силикокальции [1012], керамике [395]. Описаны методы пламенной фотометрии для определения кальция в чистых и высокочистых металлах уране [201, 12011, алюминии [1279], селене [1454], фосфоре, мышьяке II сурьме [1277], никеле [1662], свинце [690], хроме [782] и некоторых химических соединениях кислотах (фтористоводородной, соляной, азотной [873]), едком натре [235], соде [729], щелочных галогенидах [499, 885], арсенатах рубидия и цезия [316], пятиокиси ванадия [364], соединениях сурьмы [365, 403], соединениях циркония и гафния [462, 1278], солях цинка [590], солях кобальта и никеля [1563], карбонате магния [591], ниобатах, тантала-тах, цирконатах, гафнатах и титанатах лития, рубидия и цезия [626], стронциево-кальциевом титанате [143], паравольфрамате аммония [787]. [c.146]

    Изучение фотолюминесценции урановых минералов и руд показало, что не все урановые и урансодержащие минералы люминесцируют [155, 738, 1055, 1057 и др.]. Наиболее ярко люминесцируют фосфаты, фториды, арсенаты, карбонаты, сульфаты и суль-фокарбонаты уранила. Слабо люминесцируют ванадаты и силикаты. Цвет люминесценции урановых минералов может быть желто-зеленым, голубовато-зеленым, желтым. Спектральный состав излучения можно установить с помощью карманного спектроскопа. Минералы, в состав которых входят U(IV)), а также U (VI), выступающий в качестве кислотообразующего окисла, не люминесцируют. Люминесцентная способность минералов, содержащих группу уранила, зависит от других катионов и анионов, присутствующих в минералах так, Си , Fe +, РЬ +, Fe" +, Мп , Ag , Со , либо полностью тушат люминесценцию уранилсодер-жащих минералов, либо сильно уменьшают интенсивность свечения. [c.158]

    Максимумы светопоглощения экстрактов в изобутаноле находятся при 625 и 725 ммк. Оптимальные пределы концентрации фосфора составляют 0,2—1,5 мкг1мл. Определению не мешают ионы ацетата, бромида, карбоната, хлорида, цитрата, бихромата, фторида, йодата, нитрата, нитрита, оксалата, перманганата, сульфата, аммония, алюминия, бария, трехвалентного висмута, кадмия, кальция, трехвалентного хрома, двухвалентного кобальта, двухвалентной меди, двухвалентного железа, трехвалентного железа, двухвалентного свинца, лития, магния, двухвалентного марганца, двухвалентного никеля, калия, серебра, натрия, четырехвалентного тория, уранила и цинка. Концентрация ионов трехвалентного мышьяка, йодида и роданида не должна быть выше 50 мкг/мл, а концентрация силиката или четырехвалентного олова — выше 25 мкг/мл. Опре- [c.15]

    Фосфорномолибденовая кислота экстрагируется селективно, и ионы силиката, арсената и германата не мешают, в то время как при обычном методе определения по образованию фосфорномолибденовой кислоты названные ионы мешают определению. Уэйдлин и Меллон [26] исследовали зкстрагируемость гетерополикислот и установили, что 20%-ный по объему раствор бутанола-1 в хлороформе селективно извлекает фосфорномолибденовую кислоту в присутствии ионов арсената, силиката и германата. Предложенный ими метод позволяет определить 25 мкг фосфора в присутствии 4 мг мышьяка, 5 мг кремния и 1 мг германия. Более того, при экстракции удаляется избыток молибдата, поглощающего в ультрафиолетовой области. Измерение оптической плотности экстракта при 310 ммк обеспечивает увеличение чувствительности метода. Для получения надежных результатов необходимо строго контролировать концентрацию реагентов. Определению не мешают ионы ацетата, аммония, бария, бериллия, бората, бромида, кадмия, кальция, хлорида, трехвалентного хрома, кобальта, двухвалентной меди, йодата, йодида, лития, магния, двухвалентного марганца, двухвалентной ртути, никеля, нитрата, калия, четырехвалентного селена, натрия, стронция и тартрата. Должны отсутствовать ионы трехвалентного золота, трехвалентного висмута, бихромата, свинца, нитрита, роданида, тиосульфата, тория, уранила и цирконила. Допустимо присутствие до 1 мг фторида, перйодата, перманганата, ванадата и цинка. Количество алюминия, трехвалентного железа и вольфрамата не должно превышать 10 мг. [c.20]

    Обратите вннманпе, что наиболее широко используются следующие типы веществ 1) вещества, способные служить источником эиергии (ископаемые топлива, уран) 2) строительные материалы (силикаты, железо, магний, гиге, металлы) 3) удобрения (фосфаты, азот, калий). Все эти продукты незаменимы для человечества. [c.258]

    Тор ИТ —силикат тория ThSiOi. Теоретическое содержание окиси тория 72%. Минерал содержит примесь РЗЭ, преимущественно иттрия и церия, уран (до 1,35%). Удельный вес 4,1—5,4 твердость. около 5, цвет оранжево-желтый до бурого и черного, блеск стеклянный. Минерал сильно радиоактивен. При высоком содержании железа или урана образуются разновидности—ферриторит или ураноторит прозрачная разность оранжевого цвета носит название оранжит. [c.306]

    Фотолюминесцентные свойства стекол, содержа щих ионы уранила, и силикаты с окислами одновалент ной меди и двувалентного олова исследовали Родригес Пармели и Баджер з, Вторичные катионы ослабляют [c.219]

    Экстракцию кадмия из иодидных растворов иснользовали нри определении его содержания в металлическом алюминии [552], цинке [968, 970], уране [966], черных и цветных металлах и сплавах [610], силикатах [969] при определении нримесей в металлическом кадмии [539, 962] для определения иодид-ионов [963] для избирательного извлечения кадмия из сложных по составу сульфатных растворов [964]. [c.165]

    Известно свыше 100 различных урановых минералов многие из этих минералов содержатся в рудах, из которых добывается уран. Осно вными урановыми минералами являются окислы, урановая смолка или уранинит, одна К О встречаются также и силикаты, коффинит [и(3104) (0Н)4у] и ураноторит [(ТЬ, У) 8104]. Много урана добывается в виде вторичных минералов, образовавшихся в результате выветривания первичных минералов. Более других известен минерал карнотит [c.173]

    Другими добываемыми вторичными минералами являются следующие окислы, такие, как гуммит, (иОз-пНоО), фосфаты, например отенит [Са (и02)2(Р04)2-8Н20] и торбернит [Си (и02)2(Р04) гХ Х8Н2О], арсенаты, ванадаты, сульфаты, карбонаты, силикаты, такие, как уранофан [Са и02)25120 -бНгО], углеродистые вещества, содержащие уран, гногие [c.173]

    Можно получить целый ряд таких твердых поликристаллофосфоров, в которых спектральное распределение люминесценции и ее время жизни определяются прежде всего присутствием небольших количеств примесей, или активаторов . К по-ликристаллическим соединениям основного характера относятся сульфиды цинка, кадмия, кальция и стронция, хлорид калия, селенид цинка, вольфраматы кальция и магния, силикаты бериллия, цинка и кадмия и многие другие. Примесными активаторами могут быть медь, серебро, марганец, сурьма, таллий, свинец, редкоземельные элементы, висмут и уран. Подробно описаны методы получения таких фосфоров и разработана тео- [c.450]

    Из силицидов урана наиболее подходящим соединением для реакторов с водяным охлаждением является ПэЗ (е-фаза), обладающий высокой коррозионной устойчивостью. Соединения с высоким содержанием кремния имеют температуру плавления ниже, чем карбиды и окислы. из81 получают плавлением стехиометрической смеси порошков элементов. Порошки силикатов склонны к взрыву при доступе воздуха. Поэтому спекание измельченного из51 проводят в высоком вакууме или в атмосфере аргона. Температура спекания около 1400° С. из81 более устойчив против паровой и водяной коррозии, чем металлический уран окисление происходит при температурах выше 300° С. [c.423]

    Применяются различные схемы гидрометаллургической переработки карнотитовых руд для комплексного извлечения содержащихся в них ванадия и урана. Во всех случаях измельченную руду прежде всего обжигают, добавляя Na l (6—10% от массы руды). Температура обжига 850°. При большей температуре соединения V реагируют с SiOj, образуя нерастворимые силикаты, и извлечение V резко падает. По одному из вариантов обожженную руду выщелачивают водой для извлечения ванадия (уран при этом в раствор не переходит) пульпу фильтруют из раствора выделяют ванадий. Нерастворимый остаток (кек) поступает на дальнейшую переработку для извлечения урана. Другие варианты заключаются в совместном выщелачивании ванадия и урана [c.30]

    В земных объектах уран и торий находятся не только в состоянии рассеяния, но в нек-рых условиях могут концентрироваться, входить в заметных количествах в кристаллич. решетки ряда минералов в виде изоморфной примеси и даже образовывать самостоятельные урановые и ториевые минералы, в к-рых эти элементы являются главными компонентами. Разнообразие таких минералов очень велико и достигает более 200, однако значительная часть их встречается весьма редко. В магматич. образованиях (гранитоидах, щелочных породах, пегматитовых и гидротермальных жилах) ТЬ и и часто встречаются совместно в силикатах т, редкоземельных элементов, Н , Л Ь, Та, Т1, имеющих сложный переменный состав. Среди них иаиболее известны циркон, ортит, хлопинит, эшинит, эвксенит, давидит, пирохлор, самарскит и многие др. Важнейшими урановыми минералами с высоким содержанием урана являются безводные его окислы, представляющие единый ряд окислов 4-валеитиого и 6-валентного и с общей формулой [c.232]

    К важнейшим ториевым минералам относятся торианит, торит и монацит. Торианит — безводный окисел тория и урана с содержанием ТЬ до 93 %, черного цвета торит (оранжит) — силикат тория с содержанием ТЬ до 72% монацит — безводный фосфат церия, в к-ром содержание ТЬ достигает иногда 28%. Монацит — очень устойчивый минерал и нри разрушении породы переходит в россыпи. Монацитовые пески являются важным источником для извлечения тория и редких земель. Крупнейшие морские россыпи находятся на Цейлоне и в Бразилии. Уран значительно более подвижен, чем торий, и при разрушении минералов мигрирует в растворенном состоянии, образуя затем серию вторичных минералов, объединяемых под общим названием урановые слюдки . Они нредставлены уранил-фосфатами (отенит и торбернит), уранил-ванадатами (карнотит и тюямупит), а также уранил-карбонатами, уранил-сульфатами и уранил-арсенатами. Эти минералы образуют мелкие, большей частью желтые слюдоподобные чешуйки или тонкие землистые массы. Они легко растворимы и характеризуются отсутствием в них радиоактивного равновесия. [c.233]

    Гадолинит. Гадолинит—силикат железа, бериллия и редкоземельных элементов иттриевой группы. Будучи редким минералом, гадолинит является основным источником получения гадолиния—очень редкого элемента иттриевой группы редких земель,—по названию которого минерал и получил свое наименование. Редкоземельные элементы нередко замещены в нем частично торием (максимум до 2% ТЬОз). Уран также может присутствовать в гадо-лините (примерно до 0,5,% идОд). [c.103]

    Ряд реактивов, первоначально описанных для качественного открытия алюминия, затем был предложен и для его количественного определения (в их числе и З-окси-2-нафтойная кислота, позволяющая путем капельной реакции открывать 0,0002 мкг А1) [158]. Такие реактивы сведены в табл. IV-2. Морин применен для определения алюминия в воде [367]. При использовании 8-оксихинальдина для анализа окиси тория влияние мешающих элементов устраняют путем экстракции теноилтрифтора-цетоном и введения соответствующих комплексообразователей [228]. Известная флуоресцентная реакция алюминия с 8-оксихи-нолином применена для его прямого определения в воде [288], в бронзе [229], в вольфраме и его окислах [204], в металлических магнии [151] и уране [152], в солях висмута (после удаления последнего электролизом на ртутном катоде) [153] и в реактивных кислотах [320]. Реакция с понтахром сине-черным Р (эриохром сине-черным В) [360] использована при анализе сталей, бронз и минералов [355], морской воды [337], сульфида цинка (то же, после отделения мешающих примесей электролизом на ртутном катоде) [204], металлических магния [257, 259], германия [119] и сурьмы [123]. Отмечено применение для тех же целей понтахром фиолетового SW [327]. Салицилал-2-аминофенол, предложенный ранее для качественных целей [242], был использован для анализа реактивов высокой степени чистоты [35, 36, 76]. Указанная в табл. IV-2 чувствительность достигнута при условии тщательной очистки используемых буферных растворов. Для устранения помех со стороны больших количеств железа при анализе сталей предложено осаждать его избытком едкого натра в присутствии пергидроля [295], а при анализе силикатов — восстанавливать до двухвалентного состояния с последующей маскировкой 2,2 -дипиридилом [354] в обоих случаях определение алюминия производят путем его фотометри-рования в виде 8-оксихинолината. [c.143]


Смотреть страницы где упоминается термин Уранил, силикат: [c.91]    [c.606]    [c.41]    [c.30]    [c.158]    [c.606]    [c.17]    [c.598]    [c.617]    [c.618]    [c.454]    [c.141]    [c.433]    [c.91]    [c.172]   
Итоги науки химические науки химия и технология синтетических высокомолекулярных соединений том 7 (1961) -- [ c.454 ]




ПОИСК





Смотрите так же термины и статьи:

Силикаты



© 2025 chem21.info Реклама на сайте