Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Изолейцин, определение методом

    Анализ. Методы анализа белковых макромолекул селективны и осуществляются в зависимости от того, какая структура является объектом исследования, и начинаются с определения аминокислотного состава. Для этого необходимо провести полный гидролиз пептидных связей и получить смесь, состоящую из отдельных аминокислот. Гидролиз проводят при помощи 6 М соляной кислоты при кипячении в течение 24 ч. Так как для гидролиза пептидных связей изолейцина и валина этого может быть недостаточно, проводят контрольный 48- и 72-часовой гидролиз. Некоторые аминокислоты, например триптофан, при кислотном гидролизе разрушаются, поэтому для их идентификации используют гидролиз при помощи метансульфоновой кислоты в присутствии триптамина. Для определения цистеина белок окисляют надмуравьиной кислотой, при этом цистеин превращается в цистеиновую кислоту, которую затем анализируют. Вьщеление и идентификацию аминокислот проводят при помощи аминокислотных анализаторов, принцип действия которых основан на хроматографическом разделении белкового гидролизата на сульфополистирольных катионитах, В основе количественного определения той или иной аминокислоты лежит цветная реакция с нингидрином, однако более перспективным следует считать метод, при котором аминокислоты модифицируют в производные, поглощающие свет в видимом диапазоне. Разделение смеси аминокислот проводят при помощи высокоэффективной жидкостной хроматографии, а само определение — спектрофотометрически. Следующим этапом является определение концевых аминных и карбоксильных [c.40]


    Наиболее общим методом определения концентрации пептидов является колориметрия продуктов реакции с нингидрином [2]. Это один из наиболее чувствительных колориметрических методов. Для обнаружения аминокислот и пептидов разработаны как обычный, так и полностью автоматизированный варианты, причем нингидриновый реагент не вызывает коррозии и его можно подавать обычным микронасосом. Реакция идет по свободным аминогруппам, но в некоторых случаях хромофор образуется с низким выходом. Данные по окрашиванию дипептидов можно найти в работе [3]. У всех дипептидов, содержащих в качестве Ы-концевой аминокислоты аргинин, треонин, серин, глутаминовую кислоту, глицин, фенилаланин, метионин, лейцин и тирозин, интенсивность окраски составляет 1,6-10 у лейцина эта величина составляет 1,7-10 . У дипептидов с М-концевым лизином и аспарагиновой кислотой интенсивность окраски несколько выше (на 20 и 29% соответственно), а дипептиды с Ы-концевым гистидином и триптофаном проявляются несколько слабее (42 и 67% соответственно от средней интенсивности). Дипептиды с М-концевым пролином, валином и изолейцином окрашиваются очень слабо [2,7 6,4 и 8,5% от средней (1,6- 10 ) интенсивности]. [c.391]

    Аминокислоты анализируют также, превращая сначала альдегиды, полученные при окислении нингидрином, в эфиры [3]. Летучие альдегиды отгоняют в щелочной раствор перманганата и окисляют до соответствующих карбоновых кислот. Кислоты извлекают в виде натриевых солей и затем подвергают этерификации. Эфиры разделяют методом ГЖХ на колонке с поли-(пропиленгликольадипатом) при 150° и скорости потока азота 10 мл/мин. Метилтиопропионовый альдегид, полученный из метионина, при окислении расщепляется, а эфиры, образовавшиеся из лейцина и изолейцина, не отделяются друг от друга. При таких условиях приготовления определяют только аминокислоты, образующие летучие альдегиды. Поэтому метод ограничен определением аланина, валина, норвалина, лейцина с изолейцином и фенилаланина. Перед хроматографическим разделением эти вещества выгодно превратить в эфиры, поскольку они химически устойчивее альдегидов. Однако их лучше превращать в метил ацетали, если только будет найден простой метод получения безводных альдегидов. [c.539]

    Аминокислотный состав П. определяют после их гидролиза (кипячение в 6 и. НС1 в течение 20 ч) до составляющих аминокислот, к-рыс анализируют хромато-графич. методом на сульфокатионитах с автоматич. фотометрироваиием окрагиенных продуктов их взаимодействия с нингидрином. Для определения содержания триптофана применяют щелочной гидролиз пептидов (кипячение в 5 н. NaOH в течение 20 ч), т. к. кислотный гидролиз приводит к разрушению триптофана, а также частично серина и треонина. Глутаминовая к-та при гидролизе подвергается значительной рацемизации. Полиаминокислоты с объемистыми алкильными боковыми группами (валин, изовалин, изолейцин, лейцин) гидролизуются значительно медленнее остальных. Гидролиз П. до аминокислот моишо проводить п при помощи ферментов (трипсин, эрепсин). [c.15]


    Порядок чередования аминокислот в небольших полипептидных цепях, содержащих 5—10 аминокислотных остатков, может быть установлен прн помощи весьма трудоемких и сложных аналитических методов. Таким путем была установлена, например, структура циклопептида — грамицидина С (см. гл. XV). Структура различных пептидов, получаемых при частичном гидролизе инсулина и гемоглобина, была установлена главным образом путем метки концевых групп динитрофторбензолом [17,89]. Результаты этих анализов показали, что как инсулин, так и гемоглобин построены из гетерогенных фрагментов. Так, например, пептид А, полученный из инсулина, содержал глицин, изолейцин, валин и тирозин. Определение аргинина, гистидина, лизина, фенилаланина и треонина в этом пептиде дало отрицательные результаты. Пептид В, выделенный из того же препарата инсулина, содержал фенилаланин, валин, аспарагиновую кислоту, глутаминовую кислоту, лизин, треонин и аланин [89] (см. гл. 111 и ХП1). Полученные данные указывают на то, что в пептидах, выделенных из инсулина, нет того периодического чередования аминокислот, о котором говорит Бергман [90]. [c.135]

    Несмотря на очевидные трудности окислительного метода Фромажо для определения лейцина и валина, данные, полученные по этому методу различными авторами, хорошо согласуются с данными более точного метода изотопного разведения (ср. анализы гемоглобина). Автору этого труда кажется, что окислительный метод определения валина, лейцина и изолейцина, дающий возможность работать на количествах белка порядка 100 мг, более точен и во много раз проще единственного другого хорошо описанного способа, именно — метода Фишера. Можно также рекомендовать микробиологический метод Лаймана и др. [433В], а также хроматографический метод Гордона, Мартина и Сайндж ([261] и г. д.). [c.302]

    Определение абсолютной конфигурации представляет собой трудную, отнимающую много времени задачу, за решение которой может взяться лишь квалифицированный кристаллограф, занимающийся рентгеноструктурным анализом. Кроме того, такое определение ограничено подходящими твердыми веществами, содержащими соответствующие атомы. К счастью, оказались доступными другие методы установления конфигурации. Эти методы являются корреляционными, т. е. они устанавливают соотношение между конфигурациями двух соединений. Однако эти методы позволяют, по крайней мере в принципе, коррелировать либо непосредственно, либо в несколько стадий конфигурацию любого оптически активного соединения с конфигурацией (+)- и (—)-винных кислот или (+)- и (—)-изолейцина, абсолютная конфигурация которых известна. Поэтому корреляционные методы можно использовать косвенно для определения абсолютной конфигурации. [c.100]

    Определение валина, лейцина и изолейцина. При действии нингидрина на эти аминокислоты (И), (П1) и (IV) также образуются летучие альдегиды, которые можно определить, как описано выше [76]. Количество каждой из трех указанных аминокислот можно определить также микробиологическим методом [64, 77]. Лейцин, в связи с его плохой растворимостью, можно определить методом изотопного разведения [61]. [c.36]

    Златкис и др. [55] механизировали нингидриновый метод для автоматического анализа аминокислот, образующих летучие альдегиды. К этим аминокислотам относятся лейцин, изолейцин, норлейцин, валин, норвалин, а-амино-н-масляная кислота и аланин. При окислении глицина образуется формальдегид, который в условиях эксперимента полимеризуется и не может быть определен. Альдегиды, полученные из фенилаланина и метионина, требуют для элюирования более высокой температуры колонки, чем применяемая в этом методе. Тем не менее получают хорошее разделение изучаемых соединений при слабом размытии хвостов пиков, а производные лейцина и изолейцина отделяются друг от друга. [c.538]

    Кроме вариабельности в содержании непосредственно белков, что в той или иной степени отражается на содержании аминокислот, имеет большое значение видовая или сортовая вариабельность аминокислот одного и того же продукта. Кроме того, в отличие от метода определения белков метод определения аминокислот дает значительно большой вклад в общую вариабельность аминокислотного состава. Выше бьши подробно рассмотрены причины расхождений в аминокислотном анализе, в том числе проведение одного гидролиза вместо пяти, отсутствие анализа стандартных образцов продукта и внешнего стандарта и т. д. В результате в высокобелковых продуктах (мясо, рыба, птица, зерно и зернобобовые) при определении лизина, лейцина, изолейцина, треонина, валина, аргинина, глицина, пролина, серина, гистидина, аспарагиновой и глутаминовой кислот, фенилаланина, аланина, тирозина, общий коэффициент вариации (относительное среднеквадратичное отклонение) равен 10%, при определении метионина — 15 %, триптофана и цистина — 25% [12]. Для низкобелковых (овощи и фрукты) вариабельность значительно выше — 20, 25 и 30% соответственно [12]. Эти расчеты хорошо совпадают с прямыми экспериментальными данными по межлабораторному испытанию определения состава аминокислот ряда высокобелковых продуктов (казеин, белок яиц, соя, [c.287]


    Примечание. Метод медных солей Эрлих-Бразье может оказаться полезным как предварительная стадия при определении лейцина, изолейцина и валина при помощи других приемов. [c.278]

    Новым методом идентификации аминокислот и их количественного определения является также спектрофотометрия в инфракрасном свете. Каждая аминокислота и каждая а-хлорокис-лота (получаемая при действии соляной и азотной кислот на аминокислоты) имеют характерную кривую поглощения в инфракрасном свете [68]. При помощи спектрофотометрии в инфракрасном свете было показано, что определение лейцина и изолейцина микробиологическим методом дает слишком высокие величины [69]. [c.35]

    Примечание. Есть указания на то, что нафталинсульфонаты изолейцина и валина значительно более растворимы [71], чем производное лейцина. Такое разделение значительно повысило бы точность окислительных методов определения лейцина и валина после гидролиза сульфонатов. [c.279]

    Применение динитрофенильных производных, введенных в практику Зангером [25] с целью идентификации и количественного определения концевых аминогрупп, позволяет получить ценные сведения о количестве открытых цепей в белке. Кроме того, такие меченые аминокислоты служат в качестве реперных точек при исследовании неполного гидролиза (1346). В этом отношении полезными являются также е -аминогруппы лизина. Путем неполного гидролиза, осуществляемого с помощью кислоты и различных типов ферментов, оказалось возможным разрывать длинные полипептидные цепи в различных точках и путем анализа установить единственно возможную конфигурацию. Этим способом Зангер и Таппи[99]и Зангер и Томпсон [100] определили порядок чередования аминокислот в двух типах цепей, входящих в состав инсулина (табл. 27). Такой подход к проблеме структуры белка был облегчен широким применением новейших микрометодов хроматографии на бумаге и силикагеле и ионофореза. Таким образом, оказывается, что одна из крупнейших проблем химии белка поддается изучению с помощью весьма простых и экономичных методов. Цепи в инсулине имеют различную длину, причем цепь с N-концевым фенилаланином (цепь В) состоит из 30 остатков, а соответствующая глициновая цепь (цепь А) — из 21 остатка. Порядок чередования аминокислот и их содержание даны в табл. 27. Можно отметить следующее. Цепь А не содержит лизина, гистидина, аргинина, треонина, фенилаланина и пролина все эти компоненты входят в состав цепи В, в которой, в свою очередь, совсем нет изолейцина. Не наблюдается ни регулярного чередования аминокислот, ни тенденции к чередованию полярных и неполярных групп. Три ароматические аминокислоты (фен.фен.тир.) расположены последовательно, и два остатка глутаминовой кислоты связаны с двумя остатками ци-стеина (глу.глу.цис.цис.). В обеих цепях содержится шесть цистеиновых остатков, четыре из которых расположены врозь, а только что упомянутые два — рядом друг с другом в молекуле нативного белка все они существуют в форме цистина, но какие из них расположены между пептидными цепями, а какие в самих пептидных цепях — неизвестно. Часть дикарбоновых кислот присутствует в виде амидов — четыре в цепи А и две в цепи В. [c.255]

    Изолейцин (неиспр.) — 1,82 Е — 0,26 X ацетон), где Е — общая окраска, полученная при реакции с салициловым альдегидом в кислой среде, перечисленная на изолейцин по стандартной кривой для метилэтилкетона. Ацетон можно определить в отдельной порции того же раствора по реакции с салициловы альдегидом в щелочной среде или же другим подходящим методом. Этот расчет дает неисправленную величину для изолейцина. Но так как окисление его также не проходит количественно, то полученная неисправленная величина должна быть разделена на процент метилэтилкетона, образующийся из определенных количеств аминокислоты в данных условиях окисления. [c.288]

    Исследуя реакцию взаимодействия метилизотиоцианата с белками, авторы показали, что при большом избытке реагента (60 мкл) образуется продукт, затрудняюпщй газохроматографическое определение. При анализе бычьего инсулина после первого цикла его расщепления по методу Эдмана на хроматограмме были идентифицированы пики производных глицина и фенилаланина, после второго цикла — пики производных второй пары аминокислот изолейцина и валина. Пик производного глицина может быть экранирован пиком производного валина. [c.34]

    Для определения абсолютной конфигурации производных а-аминокислот существуют три основных подхода, которые включают химическую корреляцию, ферментативные и хирооптические методы. Рентгеноструктурные методы в большинстве своем применяют для исследования ключевых соединений или в таких особенно важных или сложных случаях, как, например, компонент антибиотика стрептолидина [22]. Химические корреляции (ряд примеров приведен в [23]) широко использовались раньше и продолжают применяться и сейчас, однако с меньшей интенсивностью. В качестве примеров на схемах (2) [24] и (3) [25] показаны реакции, использованные для выяснения стереохимии транс-З-ме-тил-1-пролина при корреляции с изолейцином. [c.236]

    Нет сомнения в том, что из гидролизатов белков могут быть получены высокоочищенные Ь-аминокислоты. Тем не менее продажные препараты аминокислот зачастую загрязнены аминокислотными примесями, которые могут быть источником экспериментальных ошибок. В связи с этим микробиологи при приготовлении сред для определения аминокислот посредством бактерий нередко предпочитают применять синтетические ВЬ-аминокислоты, а не Ь-изомеры, выделенные из белковых гидролизатов. Можно привести следующие примеры часто встречающихся загрязнений в полученных из белков препаратах лейцина и глутаминовой кислоты часто содержатся метионин, а в препаратах глутамина — аргинин и аспарагин препараты триптофана бывают загрязнены тирозином, а препараты тирозина — цистином. Выделенный из гидролизатов изолейцин обычно содержит лейцин, и наоборот. Развитие современных хроматографических методов в значительной степени упростило задачу выделения аминокислот, и повсеместное применение этих методов, несомненно, улучшит качество продажных препаратов аминокислот. [c.91]

    Фромажо и Хейтц [441] предложили определять лейцин и валин при окислении продуктов их дезаминирования до ацетона при помощи хромовой кислоты. Обе аминокислоты дают различные значения при различных условиях окисления, откуда, по мнению авторов, могут быть определены количества каждой аминокислоты. Каверзнева подвергла критике этот. метод [442]. Блок н сотрудники модифицировали его для определения также изолейцина [443, 444, 445]. [c.98]

    Основы метода. При обработке аминокислот белкового гидро-лизата нингидрином летучие альдегиды образуются из валина. лейцина, изолейцина, аланина, фанилаланина и метионина. Для определения иоследних трех аминокислот существуют отдельные метч>ды (см. гл. II, III и VII) следовательно, мо кно определить сумму аминокислот группы лейцина . [c.289]

    Одноколоночный метод анализа, смола иЯ-40. Поддерживая постоянными температуру колонки, концентрацию ионов натрия и цитрат-ионов и скорость течения буфера, варьируют величину pH первого буфера. Понижение pH с 3,545 до 3,515 ухудшает разделение треонина и серина (отношение высоты впадины к высоте пика равно 0,07 определение этого понятия см. в разд. 1.5.1). Цистин элюируется из колонки медленнее, но разделение серина и глутаминовой кислоты улучшается приблизительно до 0,19. Увеличение pH второго буфера с 4,25 до 4,30 при прочих неизменных условиях анализа ухудшает разделение изолейцина и лейцина. При увеличении pH третьего буфера гистидин элюируется быстрее. [c.41]

    В указанной работе столкнулись с определенными осложнениями из-за того, что трудно было провести выбор между лейцином и изолейцином. Соответствующие лейциновые и изолейци-новые пептиды не разделялись методом ГЖХ, и даже с помощью масс-спектрометрии не во всех случаях можно было выполнить отнесение изомеров. Окончательный вывод оказался возможен при использовании капиллярной колонки для дальнейшего разделения уловленных соединений. В настоящее время эти трудности, по-видимому, преодолены также и с помощью масс-спектрометрии [30]. [c.169]

    Потребность в отдельных аминокислотах у различных видов животных неодинакова. Так, собака может обходиться без аргинина [35], между тем как крыса нуждается и в гистидине, и в аргинине [32]. Любопытно, что потребность в некоторых аминокислотах у многих бактерий и плесеней более резко выражена, чем у человека и других позвоночных. В гл. П1 уже указывалось, что не только валин, лейцин, изолейцин и лизин, но и такие заменимые для организма высших животных аминокислоты, как глицин, пролин и глутаминовая кислота, могут быть определены микробиологическим методом, так как эти последние аминокислоты не могут быть синтезированы микробами, используемыми для их определения. Необходимо также отметить, что потребность в отдельных аминокислотах у некоторых грибов и плесеней, например у Neurospora rassa, может резко меняться под влиянием облучения или других воздействий [36]. [c.368]

    Количественное разделение фенилаланина, лейцина, изолейцина, метионина, триозина и валина достигается на колонне, наполненной картофельным крахмалом. Для автоматического отбора большого числа фракций разработано особое приспособление. Отдельные фракции весьма малого объема анализируются затем микробиологическим путем [265]. Хроматографическое разделение применено теперь и в большинстве работ по изучению распределения каротиноидов в растительных тканях. Описаны методы определения как одного каротина — пигмента с активностью витамина А [50, 114, 231, 290] в альфа-альфа и тому подобных травах — так и вместе с витамином А — в смешанных кормах [72, 200]. Выбор подходящего растворителя на стадии элюирования позволил добиться отделения р-каротина от некоторых его стереоизомеров [26]. [c.164]


Смотреть страницы где упоминается термин Изолейцин, определение методом: [c.196]    [c.414]    [c.15]    [c.291]    [c.15]    [c.97]    [c.264]    [c.291]    [c.538]    [c.438]    [c.162]   
Новые методы анализа аминокислот, пептидов и белков (1974) -- [ c.194 , c.195 , c.202 , c.212 ]




ПОИСК





Смотрите так же термины и статьи:

Изолейцин

Изолейцин определение



© 2025 chem21.info Реклама на сайте