Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Лейцин определение

    Задача 37.15. Реакция первичных алифатических аминов с азотистой кислотой приводит к количественному выделению азота в виде газа, что является основой метода определения аминного азота по Ван-Слайку. Какой объем азота (при нормальных условиях) выделится при обработке 0,001 моля следующих аминокислот а) лейцина б) лизина в) проли-на  [c.1045]


Рис. 8.3. Определение оптической чистоты энантиомеров лейцина (в виде N-ТФА-метиловых эфиров) методом капиллярной ГХ на колонках hirasil-Val с фазами противоположной хиральности (с разрешения B.Koppenhoefer, университет г. Тюбинген, ФРГ). Рис. 8.3. <a href="/info/173558">Определение оптической чистоты</a> <a href="/info/109025">энантиомеров лейцина</a> (в виде N-ТФА-<a href="/info/48170">метиловых эфиров</a>) <a href="/info/128287">методом капиллярной</a> ГХ на колонках hirasil-Val с фазами противоположной хиральности (с разрешения B.Koppenhoefer, университет г. Тюбинген, ФРГ).
    Несмотря на то что в состав белков человеческого организма и вхог дят все аминокислоты, перечисленные в табл. 14.1, однако отнюдь не все они должны обязательно содержаться в пище. Экспериментально доказано, что для человека существенное значение имеют девять аминокислот. Такими незаменимыми аминокислотами являются гистидин, изолейцин, лейцин, лизин, метионин, фенилаланин, треонин, триптофан и валин. Все остальные аминокислоты, которые называют зал1еныл1ьши аминокислотами, человеческий организм способен вырабатывать сам. Минимальные количества аминокислот, необходимые человеку в молодости, были установлены американским биохимиком У. Ч. Роузом. Ерли ежесуточное поступление в организм человека любой из восьми указанных аминокислот (за исключением гистидина) окажется ниже определенного уровня, то организм человека будет выделять больше соединений азота, нежели получать их с пищей белки в его организме станут распадаться быстрее, чем синтезироваться. Потребность молодых людей в аминокислотах колеблется в пределах двукратной дозы, например 0,4—0,8 г лизина в сутки. Минимальная потребность по Роузу представляет собой наибольшую величину для любого из наблюдаемых им лиц. Нет сомнений в том, что каждый человек отличается от другого своими генетическими особенностями, а следовательно, и своими биохимическими характеристиками. Данные, приведенные в табл. 14.2, вдвое превышают значения, установленные Роузом. Предположительно эти количества вполне достаточны для предотвращения нарушений белкового обмена для большинства людей (99%). Потребности женщин составляют приблизительно две трети от количеств, указанных для мужчин. [c.389]

    При распаде изолейцина р-окисление идет до конца обычным образом с образованием ацетил-СоА и пропионил-СоА. Однако в ходе катаболизма лейцина после дегидрирования, которым начинается р-окис-ление, происходит присоединение двуокиси углерода, осуществляемое биотинилферментом (гл. 8, разд. В). Двойная связь, сопряженная с карбонилом тиоэфира, придает этому карбоксилированию сходство со стандартной реакцией р-карбоксилирования. Зачем понадобился этот лишний СОг Метильная группа в Р-положении блокирует полное р-окисление, но при этом остается возможным альдольное расщепление, приводящее к образованию ацетил-СоА и ацетона. Дальнейший метаболизм ацетона сопряжен с определенными трудностями. В случае присоединения СОг продуктом оказывается ацетоацетат, катаболизм которого легко доводится до конца через его превращения в ацетил-СоА. [c.116]


    С помощью бумажной распределительной хроматографии легко разделить аминокислоты и определить их в смеси. Этот метод основан на том, что органический растворитель, перемещаясь вдоль полос хроматографической (фильтровальной) бумаги, увлекает за собой растворенные в нем аминокислоты. Каждая аминокислота в своем движении достигает определенного уровня. Этот уровень характеризуется коэ ициентом / /, который является отношением расстояния от середины пятна до места нанесения раствора к состоянию расположения фронта растворителя, например, / / лейцина равен [c.26]

    При питании больных диабетом (или животных, у которых диабет был вызван искусственно при помощи флоризина) индивидуальными аминокислотами наблюдалось, что большинство аминокислот вызывает повышенное выделение глюкозы и лишь некоторые (лейцин, изолейцин, фенилаланин и тирозин) дают ацетон и аце-тоуксусную кислоту, являющиеся, как известно, метаболитами жиров (том I). Следовательно, аминокислоты делятся на глюкогенные и кетогенные. (Продукты превращения следующих четырех аминокислот неизвестны лизина, метионина, триптофана и гистидина.) Отсюда следует, что в процессе расщепления аминокислот в организме некоторые аминокислоты включаются, начиная с определенной стадии, в обмен углеводов, а другие —в обмен жиров. Ниже мы опишем вкратце начало процесса расщепления аминокислот в живых организмах. [c.387]

    Наиболее общим методом определения концентрации пептидов является колориметрия продуктов реакции с нингидрином [2]. Это один из наиболее чувствительных колориметрических методов. Для обнаружения аминокислот и пептидов разработаны как обычный, так и полностью автоматизированный варианты, причем нингидриновый реагент не вызывает коррозии и его можно подавать обычным микронасосом. Реакция идет по свободным аминогруппам, но в некоторых случаях хромофор образуется с низким выходом. Данные по окрашиванию дипептидов можно найти в работе [3]. У всех дипептидов, содержащих в качестве Ы-концевой аминокислоты аргинин, треонин, серин, глутаминовую кислоту, глицин, фенилаланин, метионин, лейцин и тирозин, интенсивность окраски составляет 1,6-10 у лейцина эта величина составляет 1,7-10 . У дипептидов с М-концевым лизином и аспарагиновой кислотой интенсивность окраски несколько выше (на 20 и 29% соответственно), а дипептиды с Ы-концевым гистидином и триптофаном проявляются несколько слабее (42 и 67% соответственно от средней интенсивности). Дипептиды с М-концевым пролином, валином и изолейцином окрашиваются очень слабо [2,7 6,4 и 8,5% от средней (1,6- 10 ) интенсивности]. [c.391]

    При определении активности пептидаз в качестве субстрата применяют различные пептиды, чаш,е всего глицил-глицин, лейцил-лейцин и другие дипептиды. Определение в этом случае ведут в слабощелочной среде. [c.69]

    Биохимическое расщепление основано на наблюдении Пастера, что грибки или бактерии, растущие в растворах рацемических соединений и питающиеся ими, почти всегда потребляют и разрушают лишь одну из обеих энантиоморфных форм, оставляя другую нетронутой. Таким образом, оказывается возможным выделение последней формы в чистом виде. Например, Peni illium glau um ассимилирует в растворе аммониевой соли d,/-винной кислоты только -форму и оставляет /-форму тот же грибок разрушает /-молочную, /-миндальную и /-аспарагиновую кислоты, а также /-лейцин. По-видимому, для того чтобы определенный микроорганизм мог ассимилировать какое-либо соединение, последнее должно обладать определенной пространственной конфигурацией представляется далее, что один и тот же грибок при одинаковых внешних условиях разрушает оптически активные формы с одинаковой конфигурацией. Однако грибок постепенно можно заставить ассимилировать и второй антипод. [c.135]

    Считывание генетического кода при помощи какого бы то ни было механизма должно начинаться с определенной точки для того, чтобы информация была правильной. Так, например, последовательность СААСААСААСАА кодирует четыре аминокислотных остатка лейцина, если считывание начинается с крайнего левого С (цитидина). Если же оно начинается со следующего нуклеотида (т. е. А), это будет код для трех остатков валина. Наконец, если начинать с третьего слева нуклеотида (тоже А), мы получим последовательность трех цистеиновых остатков. [c.485]

    Белки синтезируются на рибосомах из отдельных аминокислот, образуемых самими микроорганизмами. Исключение составляют некоторые ауксотрофные мутанты, для которых необходимо присутствие в среде определенных аминокислот. Биосинтез аминокислот в клетке идет ферментативно из неорганического азота и различных соединений углерода, например продуктов аэробного или анаэробного разложения углеводов. Многие аминокислоты образуются из промежуточных продуктов цикла Кребса из а-кетоглутаровой кислоты — глутаминовая кислота, орнитин, аргинин, пролин из щавелевоуксусной кислоты — Ь-ас-парагиновая кислота, гомосерин, метионин, треонин, диаминопимелиновая кислота, лизин, изолейцин из пировиноградной кислоты — аланин, валин, лейцин, серии, глицин, цистеин (рис. 17). [c.41]


    Сорбция субстрата в активном центре а-Х, обеспечивается гвдрофобной полостью. Ее размеры 1,0x0, 5x0,4 нм оптимальны для связывания боковых цепей остатков гвдрофобных аминокислот (триптофан, фенилаланин, лейцин, тирозин), а конфигурация допускает лишь определенную ориентацию субстрата. Механизм каталитич. гвдролиза включает стадию сорбции субстрата, расщепления пептвдной связи с образованием ацилфермента и послед, переноса ацильной фуппы на нуклеоф. акцептор. [c.263]

    Для определения Ы-концевой аминокислоты пользуются лейцинами-нопептидазой, выделяемой из слизистой оболочки кишечника. Лейцин-аминопептидаза расщепляет экзопептидную связь, образованную аминокислотным остатком, содержащим свободную аминогруппу. При этом происходит ступенчатая деградация пептида. [c.512]

    Жесткость разветвленных боковых цепей. Неполярные боковые цепи валина, изолейцина и лейцина разветвлены. Разветвление крупных боковых цепей определяет их ограниченную внутреннюю подвижность. Остаток Val содержит разветвление при Ср-атоме его С -метильные группы стерически взаимодействуют с главной цепью, уменьшая ее подвижность. Остаток Пе также разветвлен при Ср-атоме, причем ветви различаются между собой. Поэтому Ср в Пе является дополнительным асимметрическим центром. Так как все биологические реакции стереоспецифичны, используется только один Стереоизомер (рис. 1.2,6). Присутствие Пе делает главную цепь более жесткой, как и присутствие Val. В случае Leu не возникает особых стерических взаимодействий с основной цепью, поскольку разветвление боковой цепи в этой аминокислоте находится при атоме С, . Жесткие боковые цепи легче фиксируются в определенном положении понижение энтропии А5цепн при этом не так велико (разд. 3.5), что способствует свертыванию цепи. [c.20]

    Тест Фуджино [387]. Тестовая система основана на взаимодействии Bo -Ala-Met-Leu-OH с ре/и-бутиловыми эфирами лейцина, изолейцина или же с (3-/ире/и-бутиловым эфиром аспарагиновой кислоты с последующим расщеплением бромцианом и определением соотношения диастереомеров прн помощи аминокислотного анализатора  [c.177]

    Определение числа пептидных цепей в белке путем количественного измерения скорости отщепления аминокислот может оказаться ненадежным, если два соседних аминокислотных остатка отщепляются почти с одинаковой скоростью. Это наблюдается в случае ростового гормона быка, в котором два остатка фенилаланина быстро отщепляются карбоксйпеп-тидазой, после чего происходит отщепление аланина, лейцина и серина. В этом белке имеются два К-концевых остатка, но расщепление гидразином позволило обнаружить только один С-концевой остаток фенилаланина. Полученные при расщеплении белка карбоксйпептидазой результаты объясняются тем, что С-концевой участок имеет состав —Фе.Фе.ОН [198]. [c.234]

    Дальнейшая расшифровка кода была основана на использовании синтетических статистических гетерополинуклеотидов определенного состава, задаваемого набором и соотношением субстратных нуклео-зиддифосфатов в полинуклеотидфосфорилазной реакции. Так, было показано, что статистический сополимер поли(и. С) кодирует включение в полипептидную цепь четырех аминокислот фенилаланина, лейцина, серина и пролина. Если соотношение U С в полинуклеотиде было 1 1, то все четыре аминокислоты включались в полипептид [c.14]

    ПЕРВИЧНАЯ СТРУКТУРА белка, последовательность аминокислотных остатков в полипептидной цепи. В П. с., закодированной в соответствующем данному белку структурном гене, заложено все необходимое для ее самоорганизации в глобулу с определенной пространств, структурой. П. с. определяет вторичную и третичную структуры белка. Методы ее установления хорошо разработаны полипептидную цепь специфически расщепляют протеиназами (трин-сином — по остаткам аргинина и лизина, химотрипсином — по остаткам аром, аминокислот и лейцина) или хим. методами (бромцианом по остаткам метионина) в полученном наборе перекрывающихся пептидных фрагментов определяют последовательность аминокислот, используя преим. ступенчатое расщепление по Эдману (процесс автоматизирован), и сопоставляют строение фрагментов. [c.429]

    Пептиды недостаточно летучи, чтобы их можно было изучать епосредственно с помощью масс-спектрометрии электронного удара. Первые попытки применения масс-спектрометрии для определения последовательности включали предварительное ацилирование аминогрупп и этерификацию карбоксильных групп. Масс-спектры таких производных показали, что расщепление происходит с обеих сторон карбонильных групп. Расщепление связи С—N приводит к ионам ацилия —ЫНСНДС=0+, в то время как расщепление связи С—С дает альдиминиевые ионы —+NH= HR. Это основная тенденция кроме того, происходит дополнительная фрагментация боковых групп некоторых аминокислот, включая валин, лейцин, аспарагин, серин, треонин и цистеин. [c.278]

    Вскоре после этого определение молекулярного веса ангидрида глицина [250] подтвердило его пиперазиновую структуру. Восстановление ангидрида лейцина до 2,5-диизобутилпиперазина [251] и гидролиз ангидрида глицина до дипептида [252] впоследствии подтвердили это. [c.353]

    Когда речь идет о наличии у функционально активных биополимеров определенной пространственной структуры, последняя, естественно не представляется абсолютно жесткой. При биологически значимых температурах в результате теплового движения происходят не только поступательное перемещение и вращение незакрепленных молекул биополимера как целого и колебания атомов, но и некоторые повороты вокруг отдельных связей, если они не затрагивают слишком большого числа атомов и атомных групп. Даже если такие повороты происходят на функционально значимы.х участках биополимера, принимающих участие в спеодфическом связывании какого-либо партнера, это может не иметь существенных функциональных последствий. Вращение вокруг четырех связей С—С радикала лейцина СН—СН2 СН(СНз)2, как правило, ие может вывести его за пределы участка, формирующего район узнавания гидрофобной части партнера. Точно так же вращение вокруг связи амидного фрагмента аминокислоты аспарагина не должно драматически повлиять на его тенденцию к образованию водородных связей с соответствующим гидрофильным участком узнаваемой молекулы. Такого рода изменения, являющиеся неотъемлемыми компонентами теплового движения, не рассматриваются как изменения конформации биополимера в целом. [c.114]

    Конформационные переходы происходят при определенны.ч изменениях условий, в которых находится биополимер. В некоторых случаях для него достаточно изменения температуры. Например, из тканей длительно голодавших кроликов наряду с активной выделяется неактивная форма тРНК, присоединяющей лейцин. Такая тРНК при действии фермента, -катализирующего реакцию присоединения лейцина, не способна к этому химическому превращению. Для перевода в активную форму ее необ.чодимо прогреть при определенных значениях pH и ионной силы. Однако наибольшее значепие в биохимических процессах имеют конформационные изменения биополимера, происходящие при присоединении к нему специфического партнера. [c.115]

    С целью более надежного определения аминокислотного состава бепка проводится параллельный гидролиз в течение 24, 48. 72 и 96 ч и асе пробы далее количественно анализируются. Д.пя валима, лейцина и нзолейцииа берутся максимальные значения, а для серина и треонина полученные значения зкстраполируютси к нулевому времени (рис. 3). [c.34]

    Уменьшение количеств белков и пептидов, необходимых для анализа их структуры, является одной из центральных проблем, стоящих перед исследователями. С целью ее решения ведется поиск новых методов изучения структуры, в частности более чувствительных способов идентификации производных аминокислот (см. с. 61). Один из перспективных подходов заключается в широком использовании радиоактивных методов анализа. В ряде лабораторий при деградации пептидов в секвенаторе применяется радиоактивный или С-ФИТ1Д. Можно вводить радиоактивную метку непосредственно в анализируемый белок. Для многих белков это достигается добавлением радиоактивно меченных аминокислот непосредственно в питательную среду, на которой выращивается культура, являющаяся источником исследуемого белка. Таким же путем оказывается возможным радиоактивно метить белок избирательно по определенным аминокислотным остаткам. Если белок, радиоактивно меченный, например, по остаткам лейцина, анализировать с помощью секвенатора, то простое измерение радиоактивности экстрактов, содержащих анилинотиазолиноны, позволяет безошибочно определить, в каких положениях полипептидной цепи в N-концевой области белка расположены остатки лейцина (рис. 31). Аналогичным образом можно определить положение и других аминокислотных остатков. Такой прием используется для анализа N-koh-цевой последовательности предшественников белков, доступных лишь в ничтожно малых количествах. Для исследования полной структуры он, однако, не применяется из-за дороговизны и трудоемкости. [c.79]

    В методе ХТС толуольная система наряду с образованием тонкой бороды обнаруживает весьма незначительное элюирующее действие величина Rf для ДНФ-лейцина равна 0,25. Если слой дезактивируют, выдерживая пластинку перед нанесением пробы не менее 12 час в парах воды, то величина Rf ДНФ-лейцина увеличивается до 0,66 и на двумерной хроматограмме достигают хорошего разделения, несмотря на отмеченное образование бороды . Растворитель Браунитцера [172] приводит к образованйю длинных пятен, а фосфатный буфер [173] совсем непригоден для метода ХТС. Размытые пятна и значительная диффузия делают разделение невозможным. Забуферивание слоя бесполезно, а добавление небольших количеств ледяной уксусной кислоты в этом случае помогает мало. Кроме усовершенствованной толуол -системы, исследовали и другие, перечисленные в разделах а) и б) растворители. При приготовлении систем следует применять растворители определенного качества. [c.416]

    Относительную чувствительность аминокислотных остатков в инсулине к "[-излучению исследовали Дрейк и его сотрудники [69]. Как указывалось ранее, интенсивное исследование инсулина особенно желательно, поскольку он является единственным белком, строение которого полностью известно. На основании результатов определений концевых групп, изучения спектров поглощения и хроматографии аминокислот на бумаге в образцах, подвергнутых облучению дозами до 40 мегафэр, были сделаны выводы 1) что цистин, тирозин, фенилаланин, пролин и гистидин обладают высокой радиочувствительностью 2) что лейцин, изолейцин, валин, лизин и аргинин заметно разрушаются при наиболее высоких дозах и 3) глицин и фенилаланин, Н-концевые аминокислоты (т. е. имеющие свободные а-аминогруппы) дезаминируются. [c.227]

    При подборе оптимальных условий определения варьировались условия опыта и системы растворителей. Потенциометрическое титрование проводилось как в водно-формоловой среде, так и в различных смешанных водно-органических средах в присутствии формалина. Применявшаяся трехкомпонентная система растворителей состояла из воды, органического растворителя и формалина в соотношении 40 40 20 объемн. %. В качестве среды для титрования карбоксильных групп были использованы следующие классы органических растворителей спирты (метанол, этанол, пропанол и бутанол), кетоны (ацетон и метилэтилкетон), нитрилы (ацетонитрил), амиды (диметилформамид). Указанным методом были проанализированы следующие аминокислоты аланин, серии, лейцин, валин, а-фенил-Р-аланин, трип- [c.104]

    Нами [8] впервые предложен потенциометрический метод количественного раздельного определения аминокислот в смеси в среде смешанного растворителя ацетонитрил — уксусная кислота (5 1). Титрантом служил — 0,1 метилэтилкетоновый раствор хлорной кислоты [9]. Исследовались аминокислоты ОЬ-валил-ВЬ-лейцин, глицил-Ь-тирозин, глицил-Ь-триптофан, л4-ами-нобензойная кислота, -цистеин, солянокислый гистидин. [c.108]

    На рис. 2 представлены кривые титрования двухкомпонентных смесей аминокислот. Как видно из рисунка, на каждой кривой имеется по два скачка титрования, что свидетельствует о раздельном определении компонентов смеси. Кривая 1 получена при титровании смеси ВЬ-валил-ОЬ-лейцин + солянокислый гистидин. Первый скачок соответствует нейтрализации более сильного основания ВЬ-валил-ВЬ-лейцина, второй — нейтрализация солянокислого гистидина. Кривая 2 получена при титровании смеси глицил-Ь-триптофан — солянокислый гистидин. Первый скачок на ней соответствует нейтрализации глицнл-Ь-триптофана, второй — нейтрализации солянокислого гистидина. [c.110]

    II необходимость точного определения их полной структуры хорошо иллюстрируется на примере выделенного из задней доли гипофиза гормона вазопрессина, обладающего аптидиуретической активностью [46]. По структуре он идентичен окситоцину, за исключением того, что в нем вместо изолейцина присутствует фенилаланин. Вазопрессин быка, кроме того, имеет в своем составе вместо лейцина аргинин, а вазопрессин свиньи — вместо лейцина лизин [8, 127]. [c.409]

    При определении эфиров аминокислот [117] растворяют навеску в этиловом спирте с таким расчетом, чтобы в 1 мл раствора содержалось 3—15 мкмоль эфира. Отбирают 1 мл этого раствора, вводят 2 мл этилового спирта и 4 мл 2Л4 раствора МНгОН-НС1, к которому предварительно добавляют 3,5 н. раствор NaOH до рН 11,6. Через 10 мин вводят 4 мл 2,5%-ного раствора трихлоруксусной кислоты, 1 мл разбавленной (1 3) хлористоводородной кислоты и 3 мл 10%-ного раствора Fe U в 0,1 н. НС1. Оптическую плотность раствора измеряют при зеленом светофильтре. Таким способом определяют эфиры аланина, бензоилфенилаланина, ва-лина, глицина, лейцина и других аминокислот. [c.272]

    При колориметрическом определении аминокислот во фракциях из хроматографических колонок в качестве стандартов используют. хроматографически чистые образцы отдельных аминокислот, дающих с нингидриновым реагентом окраску, близкую по интенсивности к теоретической. Такими аминокислотами являются лейцин, изолейцин и аланин. При последующих расчетах интенсивность окраски различных аминокислот выражают в так называемых лейциновых единицах. Эти данные используют для вычисления истинного содержания той или иной аминокислоты в образце. [c.342]

    Аминокислотный состав П. определяют после их гидролиза (кипячение в 6 и. НС1 в течение 20 ч) до составляющих аминокислот, к-рыс анализируют хромато-графич. методом на сульфокатионитах с автоматич. фотометрироваиием окрагиенных продуктов их взаимодействия с нингидрином. Для определения содержания триптофана применяют щелочной гидролиз пептидов (кипячение в 5 н. NaOH в течение 20 ч), т. к. кислотный гидролиз приводит к разрушению триптофана, а также частично серина и треонина. Глутаминовая к-та при гидролизе подвергается значительной рацемизации. Полиаминокислоты с объемистыми алкильными боковыми группами (валин, изовалин, изолейцин, лейцин) гидролизуются значительно медленнее остальных. Гидролиз П. до аминокислот моишо проводить п при помощи ферментов (трипсин, эрепсин). [c.15]

    Водородные связи, которые обычно образуются в результате взаимодействия фенольного гидроксила тирозина (14) и карбоксила глутаминовой (24) или аспарагиновой кислоты, могут вносить свой вклад в стабилизацию третичной структуры. Ионные взаимодействия, например между р-карбоксильной группой аспарагиновой кислоты (18) и е-аминогруппой лизина (8), также, по-видимому, участвуют в стабилизации структуры. Ди-сульфидные связи могут быть образованы между боковыми цепями или группами К двух остатков цистеина (4, 10) естественно ожидать, что белковая структура, фиксированная такими связями, будет очень стабильна. Недавно было высказано предположение, согласно которому внутренняя часть белковой молекулы представляет собой каплю масла . Это дает основания утверждать, что гидрофобные взаимодействия могут быть важным фактором в определении третичной структуры. Неполярные группы К таких аминокислот, как фенилаланин (11), лейцин (13), триптофан (15), изолейцин (16) и валин (19), несовместимы с высокополярными молекулами воды. Рентгеноструктурное исследование подтвердило предположение, что эти группы стремятся разместиться во внутренней части пептидной цепи и исключить воду из своего непосредственного соседства. Стабилизация структуры белка, являющаяся результа-татом этого процесса, имеет энтропийную природу, и, хотя для белков оиа не может быть точпо рассчитана, ее можно оценить, измеряя термодинамические параметры переноса углеводородов из неполярных растворителей в воду. Например, переход [c.381]

    Определение а-аминокислот [84, 85]. Подкисляют 20 мл водного раствора аминокислоты (аминоуксусная кислота, валин, изолейцин, лейцин, норлейцин), содержащего 0,3—3 мкгмоль а-аминного азота, 3 мл 0,05 н. хлористоводородной кислоты, затем подщелачивают 3 мл 0,1 н. раствора Nas Oa. Добавляют [c.85]


Смотреть страницы где упоминается термин Лейцин определение: [c.200]    [c.429]    [c.289]    [c.29]    [c.372]    [c.88]    [c.697]    [c.347]    [c.405]    [c.407]    [c.168]   
Фотометрический анализ издание 2 (1975) -- [ c.61 , c.85 , c.168 ]




ПОИСК





Смотрите так же термины и статьи:

Лейцин



© 2025 chem21.info Реклама на сайте