Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Полупроводники материалы для

    При подготовке 4-го издания книга не подверглась значительному изменению. В некоторой степени переработано изложение материала, относящегося к природе химической связи в молекулах и кристаллах, рассмотрена донорно-акцепторная связь. Дополнен материал, относящийся к свойствам твердых тел, введены представления о зонной теории металлов и полупроводников. Расширено изложение особенностей свойств газов, кристаллов при очень высоких температурах. Рассмотрены некоторые процессы при очень низких температурах (сверхпроводимость и др.). Расширен материал, посвященный внутреннему строению и свойствам воды в различных состояниях и процессам замерзания ее введено представление о релаксационном характере процессов, связанных с достижением равновесного состояния воды при изменившихся внешних условиях [c.12]


    В настоящее время вопрос о сверхпроводимости химических соединений и сплавов находится еще в стадии первоначального накопления экспериментального материала. Однако уже имеющиеся сведения дают основание ожидать, что по мере накопления таких данных будут выявлены основные закономерности зависимости сверхпроводимости от химического состава и структуры материала и на основе этого будут разработаны методы создания веществ с более благоприятным сочетанием свойств, будет расширена область сверхпроводимости и найдены более широкие возможности практического использования этого явления (подобно тому, как это было достигнуто в области полупроводников). [c.157]

    Существуют внутренний и внешний фотоэффекты. Внутренний фотоэффект сопровождается изменением или подвижности, или концентрации носителей заряда в диэлектриках и полупроводниках и положен в основу действия вентильных фотоэлементов и фотосопротивлений. Внешний фотоэффект сопровождается эмиссией электронов с поверхности материала, из которого изготовлен фотокатод фотоэлемента. Приложение напряжения и облучение фотокатода вызывает появление в цепи тока, который прямо пропорционален интенсивности света при определенных ее значениях. Характеристики некоторых типов фотоэлементов приведены в табл. И. [c.145]

    Многие алмазоподобные соединения — полупроводники. Они представляют большой интерес как материал для выпрямителей переменного тока, усилителей, фотоэлементов, датчиков термоэлектрических генераторов и др. Многие из них успешно конкурируют с полупроводниковыми германием и кремнием. [c.543]

    ТЕРМОПАРА — термочувствительное устройство, которое состоит из двух спаянных проводников различных металлов (Р1 — КН, Р1 —1г и других) или же полупроводников. При нагревании спая Т. возникает термоэлектродвижущая сила, зависящая от материала термоэлектродов и температуры спая. Для измерения т. э. д. с. в контур Т. вклю чают чувствительный электроизмерительный прибор со шкалой. Т. применяют для измерения температур до гООО С и выше. [c.247]

    В том случае, когда электрод изготовлен из полупроводникового материала, диффузный слой образуется не только в растворе, но и в полупроводнике. В этих условиях уравнение для емкости на границе электрод — раствор поверхностно-неактивного электролита принимает вид l/ =l/ ,-fl/ 2-f 1/Сз, (VII.52a) [c.196]


    Известны также ионные полупроводники, в которых электрический ток обусловлен движением ионов. В электронных приборах ионные полупроводники не используются, так как перенос вещества приводит к изменению состава и структуры материала, вследствие чего изменяются его свойства. В электронных полупроводниках ток переносится электронами и дырками, и приборы на основе таких полупроводников очень стабильны. [c.185]

    При повышении температуры колебательные движения узлов решетки полупроводников усиливаются, и это, разумеется, препятствует движению электронов, но одновременно возрастает число электронов проводимости, причем второй процесс сильнее зависит от температуры, чем торможение движения электронов, из-за колебаний узлов решетки, в результате электропроводность материала повышается. [c.188]

    Даже условия получения одного и того же материала влияют на его полупроводниковые свойства. Например, на свойства карборунда (81С) влияет температура, при которой он был приготовлен. Интересно отметить, что 51С в чистейшем виде — изолятор. Однако поверхностная оксидная пленка 5102, всегда образующаяся на нем, превращает карборунд в полупроводник. [c.453]

    Твердые полярографические электроды по роду материала делят на металлические и полупроводниковые. Полярографическое поведение последних еще мало изучено, но электрохимические свойства полупроводников не исключают возможности их использования для полярографических целей. [c.194]

    Такое расположение материала будет способствовать лучшей его систематизации и позволит излагать различные разделы физики и химии полупроводников с единой точки зрения. Это существенно поможет учащимся при изучении не только данного курса, но и специальных дисциплин, относящихся к технологии изготовления и принципам работы полупроводниковых приборов. [c.5]

    Носители заряда в полупроводниках и диэлектриках возникают за счет возбуждения связанных электронов. Отсюда следует, что их концентрация может резко изменяться под действием температуры, света, ядерных излучений, а также за счет введения примесных атомов, способствующих уменьшению энергии возбуждения. Так, при температурах, близких к абсолютному нулю, концентрация носителей в этих веществах практически равна нулю, а при высоких температурах становится близкой к концентрации носителей в металлах. Следовательно, повышение температуры способствует возбуждению связанных электронов и наоборот, понижение температуры вызывает связывание электронов, т. е. исчезновение носителей заряда. Процессы возбуждения (генерации) и исчезновения (рекомбинации) носителей заряда происходят не моментально, а с некоторой конечной скоростью, величина которой определяет целый ряд основных свойств полупроводников и является одной из важнейших характеристик материала. [c.11]

    Для Применения германия в качестве полупроводника он должен быть очень чист. Например, содержание Аз не может превышать 10- %, т. е. одного атома Ле на миллиард атомов германия. Достижение столь высокой чистоты требует прежде всего Тщательной оЧистки материала, из которого вырабатывается вещество полупроводника. Однако большей частью дополнительной очистке приходится подвергать и само это вещество. [c.627]

    Графит широко используется для изготовления тиглей. Стержни из графита применяются как электроды. Много графита идет на производство карандашей. Алмаз используется в ювелирной промышленности. Технический алмаз (с примесями) используется как абразивный материал. Углерод и кремний применяются для производства различных сортов чугуна. В металлургии углерод используется как восстановитель, а кремний из-за большого сродства к кислороду — как раскислитель. Кристаллические кремний и германий в особо чистом состоянии (не более 10 ат. % примеси) используются как полупроводники в различных устройствах [c.458]

    Нитрид кремния используется в качестве компонента жаростойких и химически устойчивых композиционных материалов. Он нашел также применение в микроэлектронике в качестве диэлектрика и высокотемпературного полупроводника. Карбид кремния — абразивный материал для шлифовальных кругов, матрица для порошковой металлургии, компонент для огнеупоров. К тому же карбид кремния является основой полупроводниковых диодов и фотодиодов. [c.214]

    Для травления металлов эффективны все способы. Для травления полупроводников ионная бомбардировка используется редко, так как необходимый эффект можно достигнуть другими более простыми способами, а также из-за возможности ухудшения свойств "и повреждения материала при нагревании до высоких температур. [c.101]

    Одним из основных условий применимости этого метода является отсутствие р—п-перехода, т. е. можно изучать диффузию атомов, создающих проводимость, аналогичную собственному типу проводимости пластины. Иногда запирающий р—п-переход создают специально, чтобы обеспечить возможность непосредственного измерения диффузионного слоя. Таким способом можно изучать диффузию доноров в полупроводнике р-типа, и наоборот. Измерения проводимости при этом осуществляются четырехзондовым методом. При измерении удельного сопротивления на плоской отполированной поверхности полупровод никового материала устанавливают четыре точечных зонда, располо женных достаточно близко друг от друга и далеко от границ образ ца, чтобы последние не влияли на электрическое поле вблизи контак тов. Внешние зонды —токовые, а два внутренних — потенциальные Расстояния между зондами обычно принимают равными 0,5—1,5 мм Необходимо располагать зонды таким образом, чтобы они лежали на одной прямой. Удельное сопротивление больших образцов рассчитывают по формуле [c.157]


    С — очень твердые кристаллы, мало уступающие по твердости алмазу. Карборунд наносится на поверхность точильных и шлифовальных кругов, используемых при обработке металлов. Применяется как огнеупорный материал, так как его т. пл. 3000 К. Чистый 51С является изолятором, но введение примесей позволяет использовать его как полупроводник, способный работать при высоких температурах (нагревательные элементы — силиты). [c.416]

    Образование нелокализованных электронных пар характерно и для органических соединений, в которых есть сопряженные двойные связи (так называются двойные связи, чередующиеся с единичными), например бутадиен-1,3, или дивинил СНа=СН—СН=СН2, гекса-триен-1,3,5 СНг=СН—СН=СН—СН=СНа и др. Особенно интересны вещества, молекулы которых содержат системы сопряженных двойных связей (полиены, красители, некоторые полимеры и др.). Их электропроводность лежит в интервале проводимости полупроводников и достигает значения порядка 10" oм м , а в ряде случаев-доходит до 0 ом -см . Проводимость в этих соединениях имеет электронный характер, носителями тока являются нелокализованные р-электроны, очень подвижные, принадлежащие всей системе в целом. Некоторые органические полупроводники используются уже сейчас. Например, фталоцианин меди нашел применение в качестве материала для фотопроводящих мишеней в передающих телевизионных трубках (видиконах). [c.99]

    Рассмотрим влияние химически адсорбированного кислорода и паров воды на полупроводниковые свойства германия. Окисленная поверхность германия, содержащая оксид и гидроксид, проницаема для водных паров. На поверхности раздела между германием и оксидным слоем молекулы воды отдают электроны германию и образуют ионы Н, а гидроксильные группы связываются с поверхностными атомами германия. Процесс образования ионов Н резко возрастает при большой концентрации дырок вблизи поверхности. При этом энергетические уровни непосредственно пол поверхностью полупроводника настолько искажаются, что, например, приповерхностные участки базовой области германиевого триода от эмиттера до коллектора могут превращаться в материал л-типа, и базовый слой окажется за-шунтированным.-Очевидно, окончательные этапы изготовления прибора должны проходить в сухом воздухе и р—л-переходы должны быть герметизированы. В оксидном слое у поверхности раздела с полупроводником ионы Н способны перемещаться. В определенных условиях ионы Н захватывают электроны из объема германия, уменьшая тем самым число свободных электронов. При этом изменяются объемный [c.250]

    Полирующие травители предназначаются для удаления материала с микровыступов поверхности, после действия которых получается весьма гладкая поверхность. В некоторых препаратах р- и л-типы полупроводников травятся почти с одинаковой скоростью, но при трав -лении ими р—л-переходов травится почти только одна сторона перехода. [c.252]

    В настоящем издании исключен устаревший и второстепенный материал, а также сведения, достаточно подробно излагаемые в современных курсах физической химии, физики и других дисциплинах или в специальных руководствах по электроаналитической химии и технике электрохимических измерений. Это позволило включить в учебник, не увеличивая его объема, разделы, посвященные наиболее перспективным научным направлениям и наиболее важным проблемам, таким, как электрохимия полупроводников, основы теории действия ионосс лективных электродов, роли сольватироваиных электронов в электродном равновесии и в кинетике электродных процессов, а также некоторые другие. [c.3]

    Кристаллы SijN бесцветны, проявляют полупроводниковые свойства (Д = 3,9 эВ). Нитрид кремния используют в качестве химически стойкого и огнеупорного материала, в создании коррозионностойких и тугоплавких сплавов, в качестве высокотемпературного полупроводника. [c.420]

    Стеклообразные полупроводники отличаются (по сравнению с кристаллическими полупроводниками) дешевизной и хорошими технологическими свойствами. Особенно существенно, что на их электрические свойства мало влияют нримеси это в ряде случаев позволяет огдагь предпочтение этим полупроводникам перед кристаллическими полупро- одниковыми материал ами. [c.327]

    В настоящее время накоплен большой экспериментальный материал, показывающий возможность применения полисопряжен-ных полимеров в качестве ингибиторов в процессах термической, термоокислительной, фото- и радиационной деструкции мономеров и полимеров. Известны каталитические и фотосенсибилизирующие свойства таких полимеров [277], их применение в качестве органических полупроводников [278], электронообменников [279] и др, Полисопряженные системы играют большую роль в формировании и эволюции белков и нуклеиновых кислот, а также являются основой структуры коферментов, витаминов, гормонов [280.  [c.284]

    Многие вещества с тетраэдрическими связями — полупроводники. Они представляют большой интерес как материал для выпрямителей переменного тока, усилителей, фотоэлементов, датчиков, термоэлектрических генераторов и др. Многие из них успешно конкурируют с полупроводниковыми германием и кремнием. На основе InSb работают приборы, сигнализирующие о появлении нагретого тела на большом расстоянии. Арсенид галлия GaAs более перспективен, чем Si, в солнечных батареях. [c.202]

    Алмаз был известен в далеком прошлом, широко применяется в настоящем, велики перспективы его использования в будущем. С развитием технЕжи, когда возникла необходимость в новых видах минерального сырья, в частности для обработки камня, металлов, твердых синтетических материалов, алмаз приобрел как бы вторую жизнь. В настоящее время существование всей обрабатывающей промышленности и машиностроения (от создания мощных агрегатов до изготовлешы тончайших механизмов и приборов) практически немыслимо без применения алмазов. Сейчас алмазы очень широко используются как абразивный материал (абразивные порошки, пасты, шлифовальные круги, алмазные пилы, стеклорезы и т.д.), что основано прежде всего на их чрезвычайно высокой твердости. В последние годы все больше привлекают внимание другие исключительные свойства алмаза его, электрические свойства при использовании в качестве полупроводников, высокое светопреломление - в оптических приборах. Находит применение его практическая амагнитность. Алмаз как кристаллическое вещество благодаря плотной упаковке атомов углерода может стать накопителем и хранителем обширной информации. [c.43]

    Так как свойства вещества — механические, электрические, оптические, химические — определяются энергетическим состоянием валентных электронов, то в первую очередь нас интересует соответствующий участок энергетического спектра. Параметры последнего — значения ширины валентной, запрещенной зон, зоны проводимости и положение различных локализованных уровней — могут быть определены путем изучения оптических спектров, электропроводности и других свойств твердого вещества (см. гл. IX). Зная эти параметры, можно решать обратную задачу определять по ним неизвестные нам свойства вещества. Не случайно общепринятое деление твердых веществ на изоляторы, проводники, полуметаллы и металлы основывается на значениях ширины запрещенной зоны. Возьмем, например, ряд простых веществ алмаз, кремний, германий, олово, свинец. Каждое из этих вещёств по-своему замечательно и каждое используется как незаменимый материал, но в совершенно различных областях техники, а кремний и германии находят применение в полупроводниковой технике. Природа данных веществ изменяется скачками, как атомные номера соответствующих элементов. Скачками изменяется и ширина запрещенной зоны при переходе от одного аналога к другому. Для алмаза эта величина составляет 5,6 эВ. Это — изолятор, самое твердое из веществ. Для кремния она равна 1,21 эВ. Такой энергетический барьер уже много доступнее для валентных элек- тронов отсюда полупроводниковые свойства данного вещества. Ширина запрещенной зоны германия 0,78 эВ — он полупроводник с высокой подвижностью носителей тока — электронов и дырок. Наконец, серое олово по ширине запрещенной зоны, равной всего 0,08 эВ, занимает последнее место в данном ряду и относится скорее к металлам, чем к полупроводникам, а белое олово — настоящий металл. Так с изменением ширины запрещенной зоны закономерно изменяется природа твердого вещества. [c.105]

    Примером более слол<ного анализа является определение примесей в металлическом германии свойства этого материала, применяющегося, например, в качестве полупроводника для детекторов, чрезвычайно сильно зависят от присутствия очень малых количеств примесей других элементов. Для определения микропримесей редкоземельных элементов, сурьмы, молибдена, меди и др. поступают следующим образом . В ядерный реактор вводят испытуемый образец германия и чистый образец с известным количеством введенных примесей. После облучения образцы растворяют, вводят в качестве носителей-коллекторов нерадиоактивные изотопы определяемых элементов. Германий отгоняют в виде легколетучего тетрахлорида, а остаток подвергают разделению химическими методами, осаждая отдельно группу редкоземельных элементов, отдельно сурьму, медь и другие определяемые элементы. Активность выделенных фракций сравнивают с активностью фракций эталона и на этом основании вычисляют содержание микропримесей в испытуемом образце. Таким методом удается определить миллионные доли процента примесей редкоземельных элементов— до З-Ю / о сурьмы, молибдена и др. [c.21]

    КВАНТОВАЯ МЕХАНИКА - физическая теория, изучающая общие закономерности движения и взаимодействия микрочастиц (элементарных частиц, атомных ядер, атомов и молекул) теоретическая основа современной физики и химии. К. м. возникла в связи с необходимостью преодолеть противоречивость и недостаточность теории Бора относительно строения атома. Важнейшую роль в разработке К. м. сыграли исследования М. Планка, А. Эйнштейна, Н. Бора, М. Борна и др. К. м. была создана в 1924—26 гг., благодаря трудам Л. де Бройля, Э. Шредингера, В. Гейзенберга и П. Дирака. К. м. является основой теории многих атомных к молекулярных процессоБ. Она имеет огромное значение для раскрытия строения материи и объяснения ее свойств. На основе К. м были объяснены строение и свойства ато MOB, атомные спектры, рассеяние света создана теория строения молекул и рас крыта природа химической связи, раз работаиа теория молекулярных спектров, теория твердого тела, объясняющая его электрические, магнитные и оптические свойства с помощью К. м. удалось понять природу металлического состояния, полупроводников, ферромагнетизма и множества других явлений, связанных с природой движения и взаимодействием микрочастиц материи, не объясняемых классической механикой, [c.124]

    Гальваномагнитные эффекты. Одним из гальваномагнитных эффектов является эффект Холла — явление возникновения в полупроводнике с текущим по нему током поперечного электрического поля под действием магнитного поля. Методика и аппаратура, ос- нованные на использовании эффекта Холла, позволяют определять удельную электропроводность материала, тип электропроводимости, подвижность и концентрацию носителей заряда, ЭДС и постоянную Холла. [c.175]

    Галлий и индий образуют с р-элементами V группы периодической системы бинарные соединения типа А" (например, ОаР, ОаАз, 1п5Ь и др.). В преобладающем большинстве соединений типа А" В электронные орбитали р -гибридизованны кристаллические решетки этих соединений имеют структуру, характеризующуюся тетраэдрическим расположением химических связей. Многие из этих алмазоподобных соединений — полупроводники. Их используют как материал для выпрямителей переменного тока, датчиков, термоэлектрических генераторов и др. [c.270]

    Рассмотрим электропроводность собственного полупроводника. Под термином собственный полупроводник понимают либо совершенно чистый материал, либо такой материал, в котором при-сутству.ющие примеси не влияют на концентрацию носителей заряда. [c.124]

    Кристаллизация из газовой фазы дает возможность (подвергая, например, исходное твердое вещество сублимации с последующим осаждением) получать материал высокой степени чистоты, заданной структуры и с заданными свойствами. Метод кристаллизации из газовой фазы используют для получения тонкодисперсных порошков — пигментов и усиливающих наполнителей, в частности для получения оксидов (AI2O3, TiOa и др.) путем гидролиза газообразных хлоридов или путем их высокотемпературного окисления. Осаждение из газовой фазы применяют для покрытия подложек тугоплавкими соединениями или оксидными пленками либо для металлизации. Этот метод, заключающийся в эпитаксиальном росте кристаллов, т. е. в наращивании одного вещества на другое, базируется на сходстве строения срастающихся граней. Кристаллизацией из газовой фазы получают монокристаллы и монокристаллические пленки, в частности для лазеров и приборов микроэлектротехники. Возможно прямое осаждение из газов готовых твердых изделий, например, деталей полупроводников и других деталей сложной формы. Возможно также получение гранулятов физическим или химическим осаждением вещества из газа в кипящем слое. Свойства получаемых твердых фаз зависят от условий пересыщения газовой фазы, от температуры подложки и др. [c.262]


Смотреть страницы где упоминается термин Полупроводники материалы для: [c.149]    [c.120]    [c.122]    [c.164]    [c.221]    [c.459]    [c.99]    [c.116]    [c.274]    [c.279]    [c.282]    [c.305]   
Возможности химии сегодня и завтра (1992) -- [ c.91 ]




ПОИСК





Смотрите так же термины и статьи:

Полупроводники

Полупроводники полупроводники



© 2025 chem21.info Реклама на сайте