Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Аммиак реакция горения

    Характерной особенностью использования аммиака является низкий стехиометрический коэффициент (6,1 кг/кг), высокая температура воспламенения аммиачно-воздушных смесей (650°С) и их вялое сгорание. Последнее обусловлено низкой температурой аммиачного пламени (1956 К по сравнению с 2336 К для бензина), в связи с чем самоускорение реакций горения замедляется. Цетановое число аммиака близко к нулю, в то же время аммиак отличается высокой детонационной стойкостью его октановое число составляет —ПО по моторному и я 130 по исследовательскому методам. [c.189]


    Необратимо протекает, например, реакция горения аммиака  [c.129]

    Реакция горения аммиака выражается уравнением [c.134]

    Напишите уравнение реакции горения аммиака в кислороде. [c.86]

    Закончить уравнения реакций горения аммиака в кислороде (в присутствии катализатора и без него)  [c.239]

    Реакция горения аммиака выражается уравне нием  [c.70]

    Составьте уравнения реакций горения фосфина и аммиака. [c.123]

    Смесь аммиака и метиламина, в которой на 1 атом азота приходится 4 атома водорода, поместили в реактор с 9-кратным объемом кислорода. Герметически закрытый реактор нагрели, после полного завершения реакции горения реактор охладили до первоначальной температуры. Как изменилось давление в реакторе  [c.86]

    Написать уравнение реакции горения аммиака. [c.143]

    Реакция горения аммиака в чистом кислороде протекает с образованием свободного азота и водяного пара  [c.216]

    Самым сильным окислителем является жидкий фтор, В паре с жидким водородом, гидразином или аммиаком, как горючими, он дает топлива с наиболее высокими энергетич. показателями (см. табл, 2), Преимущество жидкого фтора перед другими окислителями состоит в сравнительно большой плотности, высокой теплопроизводительности, большой химич. активности в реакциях горения, благоприятном химич, составе продуктов сгорания. Серьезными препятствиями к практич. освоению жидкого фтора ракетной техникой пока являются сильная агрессивность, ядовитость, низкая темп-ра кипения, [c.249]

    Аммиак горит в чистом кислороде, образуя свободный азот и водяные пары. На рис. 73 изображен прибор для такого опыта. Нижнее отверстие широкого цилиндра / закрыто пробкой 2, через которую проходят две трубки. Изогнутая трубка 5 служит для подвода, в прибор аммиака. По прямой трубке 4 поступает кислород. Стеклянная вата 5, находящаяся в нижней части широкой трубки, служит для того, чтобы кислород равномерно заполнил ее. Если к отверстию трубки, по которой поступает аммиак, поднести горящую лучину, то аммиак вспыхнет и будет гореть зеленоватым пламенем. Реакция горения аммиака в кислороде протекает по уравнению  [c.260]

    Атомы Н, О и радикалы ОН в больших количествах можно также наблюдать в разреженном пламени СО с О2 в случае добавки к смеси небольших количеств насыщенных и ненасыщенных углеводородов, аммиака,спиртов и других доноров водорода. При добавке к смеси СО с 0.2 дейтерия в пламени образуются атомы О, О и радикалы ОВ. Наличие больших концентраций радикалов ОН в пламени СО г О2 в присутствии различных веществ, способных служить донорами водорода, является прямым доказательством реакции О + КН = ОН + К-Как показали наши исследования, во всех случаях малые добавки доноров водорода ускоряют реакцию горения СО с О2 и уменьшают нижний предел давления самовоспламенения. Повышение предела и замедление скорости горения наблюдается при больших добавках этих веществ [89, 901 (рис. 13). [c.200]


    Водород широко используется в химической промышленности для синтеза аммиака, метанола, хлорида водорода, для гидрогенизации твердого и жидкого тяжелого топлива, жиров и т. д. В смеси с СО (в виде водяного газа) применяется как топливо. При горении водорода в кислороде возникает высокая температура (до 2600°С), используемая для сварки и резки тугоплавких металлов, кварца и др. Жидкий водород используют как одно из наиболее эффективных реактивных топлив. В атомной энергетике для осуществления ядерных реакций большое значение имеют изотопы водорода — тритий и дейтерий. [c.275]

    Рассмотрим экзотермическую реакцию газа на твердой по верхности. Это может быть реакция, в которой твердое вещество действует как катализатор (например, окисление аммиака на платине), или оно является реагентом, образуя новую твердую фазу или газообразные продукты. Хорошо известными примерами могут служить горение углерода, восстановление окислов железа в доменной печи по реакции [c.169]

    Необъяснимость каталитических реакций вызвала большой интерес, и в первой половине XIX в. почти все ученые того времени уделяли катализу большое внимание. В результате многочисленных работ было получено огромное количество новых данных, требовавших объяснений и обобщений. К этому периоду относятся замечательные работы Г. Дэви по беспламенному горению, что привело его к изобретению хорошо известной безопасной лампы для рудокопов, работы Л. Тенара по разложению аммиака над различными металлами, исследования М. Фарадея, объединенные им в труде О способности металлов и других твердых тел соединять газы между собою , и созданная им же одна из первых адсорбционных теорий катализа. Сюда же относятся работы И. Берцелиуса, Ю. Либиха, И. Деберейнера, А. Бертолле, Е. Митчерлиха, А. де ла Рив и многих других, о работах которых излагается ниже. [c.14]

    В химии окислительно-восстановительные реакции принадлежат к числу наиболее распространенных. В основе технического производства таких важнейших химических продуктов, как аммиак, азотная кислота, серная кислота, металлы, процессов сжигания топлива и горения лежат реакции окисления — восстановления. Дыхание, усвоение растениями СО2 с выделением кислорода, обмен веществ и другие биологически важные процессы также представляют собой реакции окисления — восстановления. [c.28]

    Различают катализ гомогенный и гетерогенный. Гомогенным называется катализ, когда катализатор образует одну фазу с реагирующей гомогенной системой, например, горение окиси углерода ускоряется присутствием следов влаги. Реакции инверсии сахара, гидролиза крахмала в воде ускоряются ионами водород. Гетерогенным называется катализ, когда катализатор образуй обособленную фазу, например, гидрирование углеводородов на никеле, синтез аммиака на железе и др. [c.234]

    На практике вы встречались с реакциями, которые протекают в растворах и в газообразном состоянии, например между азотом и водородом при синтезе аммиака. В этих случаях среда однородная, т. е. гомогенная. Вам известны и такие реакции, в которых реагирующие вещества не образуют гомогенную среду. Примером является горение угля и других твердых веществ. Оно происходит в неоднородной, т. е. гетерогенной, среде. В связи с этим при рассмотрении вопроса о скорости химической реакции необходимо различать реакции, протекающие в гомогенной и гетерогенной системах. [c.89]

    Опишите реакции а) горения, б) каталитического окисления аммиака, приведите их уравиения. Составьте уравнения реакций как окислительно-восстановительных, учитывая переход электронов. [c.47]

    Схема производства карбоната натрия аммиачным способом (процесс Сольве — 1861 г.) показана на рис. 18.7. При этом используют следующие вещества кокс, известняк, хлорид натрия и аммиак. Цикличность процесса и регенерация веществ приводят к тому, что единственным побочным продуктом является хлорид кальция. Процесс Сольве начинается с обжига известняка в печах необходимую энергию дает горящий кокс. Известняк и кокс смешиваются в печи для обжига и за счет горения кокса идет реакция  [c.395]

    Аэрозоли возникают в результате диспергирования твердых тел и жидкостей (пыль, туман) конденсации частиц при горении топлив коагуляции малых частиц в атмосфере в более крупные гомогенного или гетерогенного образования ядер конденсации в условиях пересыщения реакций, происходящих на поверхности твердых частиц и приводящих к их росту реакций в капле воды (растворение SO2 и последующее окисление) разрушения крупных частиц и образования большого количества мелких частиц (например, испарение капелек в облаке приводит к увеличению общего числа частиц, способных стать ядрами конденсации). Большинство рассмотренных выше химических превращений оксидов серы, азота, галоидсодержащих соединений происходит на поверхности твердых частиц или капелек атмосферной влаги. Так, сульфат аммония, являясь одним из распространенных компонентов атмосферных аэрозолей, возникает при взаимодействии аммиака с ядрами серной кислоты, образующейся по реакциям (1-3). [c.17]


    На практике встречаемся с реакциями, которые протекают в растворах и в газообразном состоянии, например, между азотом и водородом при синтезе аммиака. В этих случаях среда однородная, т.е. гомогенная. Известны реакции, в которых реагирующие вещества не образуют гомогенную среду. Например, горение угля и других твердых веществ, т.е. речь идет о неоднородной, гетерогенной среде. [c.124]

    Пересыщенные пары, из которых конденсируются частицы аэрозолей, могут образовываться и вследствие химических реакций. Наиболее известный пример таких процессов — образование дыма при горении. Аэрозоли получают и при реакции паров аммиака и хлористого водорода, при взаимодействии многих веществ, таких, как SO3, H l, А С1з, с парами воды в воздухе. [c.148]

    Аэрозоли, подобно лиозолям, могут быть получены методами диспергирования или конденсации. В природе диспергирование твердых пород происходит при обвалах, вулканических извержениях, выветривании, взрывах. Во всех этих случаях образуются полидисперсные аэрозоли. Более однородные аэрозоли получаются конденсационными методами. В основе их лежат конденсация пересыщенного пара при охлаждении и различные химические- реакции, при которых образуются жидкие или твердые продукты с малым давлением насыщенного пара, например дым, возникающий при взаимодействии газообразных аммиака и хлористого водорода с образованием твердого хлористого аммония, или дым окиси магния, образующийся при горении магния и т. д. [c.356]

    Те же замечания можно сделать относительно совокупности подобных реакций при горении смесей окиси углерода, ацетилена, метана или аммиака с кислородом, а также водорода с хлором. Следует отметить, что равновесные реакции определяют распределение неспаренных спинов данной системы, а изменение их общего числа происходит только при рекомбинации или обрыве цепей. Введение в пламя каких-либо добавок (по- [c.243]

    Водород применяется для синтеза аммиака, хлороводорода, метанола. С участием водорода осуществляется превращение жидких растительных жиров в твердые заменители животного масла, преобразование низкокачественных углей в жидкое топливо. Реакция горения водорода в кислороде, в процессе которой достигается темнератзфа —2800 К, используется для сварки и резки тугоплавких металлов. Важное значение имеет реакция получения катализатора— платиновой черни  [c.413]

    Применение. В химической промышленности водород служит сырьем для получения аммиака NH3, хлороводорода H I, метанола СН3ОН и других органических веществ. В пищевой промышленности водород используют для выработки твердых жиров путем гидрогенизации растительных масел. В металлургии водород используется для восстановления некоторых цветных металлов из их оксидов. Как уже отмечалось выше, водород — очень легкий газ, поэтому им заполняют воздушные шары, зонды и другие летательные аппараты. Высокая экзотермич-ность реакции горения водорода в кислороде обусловливает использование водородной горелки для сварки и резки металлов (температура водородного пламени достигает 2600 °С). Жидкий водород является одним из наиболее эффективных видов ракетного топлива. [c.337]

    Примером затухания реакции из-за наличия геплопроводно-сти в обратном направлении могут служить некоторые типы каталитических реакций и пламенное горение. Рассмотрим окисление аммиака или метанола, которое осуществляют пропусканием паро-воздушной с.меси через слои платиновой или серебряной сетки соответственно. В обоих процессах теплопроводность катализатора обусловливает обратную передачу тепла, и в них обоих существует два стационарных со стояния — желательное, при почти полном иревращении, когда катализатор нагрет до красного каления, и нежелательное, когда конверсия близка к нулю, а. катализатор холодный. Для достижения верхнего стационарного состояния катализатор должен быть предварительно подогрет (например, с помощью горелки). Это состояние поддерживается до тех пор, пока катализатор остается активным (обычно к этому и стремятся). Подобные случаи подробно рассмотрены [c.164]

    При горении аммиака в хлоре продуктами реак- ции являются хлористый водород и азот. В каких объемных отношениях взаимодействуют при этой реакции ам миак п хлор и каково отношение между объемами полу чающихся газов  [c.23]

    Самую многочисленную группу составляют химические процессы, из которых наиболее важными в технологии являются следующие процессы горение (сжигание жидкого, твердого и газообразного топлива с целью получения энергии, серы — для получения серной кислоты) пирогенные (коксование углей, пиролиз и крекинг нефтепродуктов) окислительно-восстановительные процессы (газификация твердых и жидких топлив, конверсия углеводородов) электрохимические (электролиз воды, растворов и расплавов солей, электрометаллургия, химические источники тока) электротермические (электровозгонка фосфора, получение карбида и цианамида кальция) плазмохимические (реакции в низкотемпературной плазме, включая окисление азота и пиролиз метана, получение ультрадисперсных порошкообразных продуктов) термическая диссоциация (получение извести, кальцинированной соды, глинозема и пигментов) обжиг и спекание (высокотемпературный синтез силикатов, получение цементного клинкера и керамических кислородсодержащих и бескислородных материалов со специальными функциями) гидрирование (синтез аммиака, метанола, гидрокрекинг и гидрогенизация жиров) комплексообразова-ние (разделение и рафинирование платиновых и драгоценных металлов, химическое обогащение руд, например путем хлорирующего или сульфатизирующего обжига для перевода металлов в летучие или способные к выщелачиванию водой соединения) химическое разложение сложных органических веществ (варка древесных отходов с растворами щелочей или бисульфита кальция с целью делигнизацми древесины в производстве целлюлозы) гидролиз (разложение целлюлозы из отходов сельскохозяйственного производства или деревообрабатывающей промышленности с по- [c.211]

    Смесь воздуха с водой нагревается в печи 1 до 250 С и поступает под решетку реактора 2. Пропилен и аммиак подаются непосредственно в кипящий слой катализатора. Для предотвращения горения катализатора в отстойную зону реактора 2 подается насыщенный водяной пар. Выделяющаяся теплота снимается через рубашку реактора насыщенным водяным паром, в который предусмотрен вспрыск парового конденсата. Продукты реакции, содержащие непрореагировавший аммиак, нейтрализуются 10—20%-ной серной кислотой в аппарате 5 и через холодильник 4 поступают в абсорбер 5 отходящий газ сжигают. Из иижией части абсорбера насыщенный абсорбент поступает в отпарную колонну 6. В качестве абсорбента применяют воду. Из куба колонны 6 тощий абсорбент вновь возвращается в абсорбер 5. [c.137]

    Конечно, процесс можно провести только в шахтном конверторе. Аппаратурно это выгодно теплота сгорания природного газа выделяется внутри реактора, и ее использование для поддержания режима эндотермической реакции будет наиболее полным (в трубчатом реакторе необходимо преодолеть термическое сопротивление стенки и зернистого слоя катализатора). Поскольку количество азота должно быть дозировано, а тепла подвести надо достаточно много, то кислорода воздуха не хватает. В реактор подают воздух, обогащенный кислородом. Одноступенчатая парокислородовоздушная конверсия метана была распространена ранее. Но в ней труднее эффективно утилизировать тепло реакционной смеси и отделить продукты горения. Оптимизация схемных решений превалирует над оптимизацией процесса в реакторе. Современные производства аммиака включают двухступенчатую конверсию метана. [c.442]

    Если в реакции участвует только одно вещество, адсорбционное равновесие которого определяет степень заполнения, то скорость реакции окажется пропорциональной концентрации этого вещества в степени 1—а, где а — число, у которого нет никаких оснований быть целым. Таким образом, реакция оказывается дробного порядка по исходному веществу. Как мы покажем в главе II, примером может слуншть реакция углерода с кислородом — основная реакция весьма важного в технике процесса горения угля. В более сложных случаях, когда степень заполнения поверхности определяется не адсорбционным, а химическим равновесием, величина С представляет собой равновесную концентрацию адсорбирующегося вещества, а реакция имеет дробный порядок и тормозится продуктом, как в уже упоминавшихся примерах каталитического синтеза аммиака и метилового спирта. Так, для процесса синтеза аммиака на железном катализаторе, согласно Темкину и Пыжеву [14], скорость реакции определяется медленной активированной адсорбцией азота, причем адсорбированный азот находится в равновесии с аммиаком и водородом в газовой фазе, откуда [c.21]


Смотреть страницы где упоминается термин Аммиак реакция горения: [c.149]    [c.13]    [c.114]    [c.284]    [c.11]    [c.50]    [c.308]   
Лекции по общему курсу химии ( том 1 ) (1962) -- [ c.369 ]

Лекции по общему курсу химии Том 1 (1962) -- [ c.369 ]




ПОИСК





Смотрите так же термины и статьи:

Аммиак горение



© 2025 chem21.info Реклама на сайте