Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Хлориды этилена

    Меди (II) хлорид — этилен синтез [c.417]

    Исходные газы — этилен и хлористый водород (потоки / и 2) поступают в реактор I гидрохлорирования, заполненный хлористым этилом. Процесс проводится в присутствии катализатора (хлорида алюминия). Выходящий из реактора поток 3 поступает в подсистему выделения хлористого этила и непрореагировавшего исходного сырья сначала в холодильнике II и сепараторе III. затем в холодильнике IV и сепараторе V. [c.62]


    Пропилен, так же как этилен, может нолимеризоваться в присутствии катализаторов. Первоначально в качестве катализаторов были испробованы хлориды некоторых металлов, серная и фосфорная кислоты, фтористый бор и другие. Под действием этих катализаторов удавалось получать полимеры пропилена с небольшим молекулярным весом — 400—500, т. е. состоящие из 10—12 молекул. Эти полимеры были жидкими. [c.341]

    I — колонна обезвоживания 2 — сепаратор 3 — реактор 4 — газосепаратор 5 — сепаратор для отделения катализаторного комплекса 6 — блок приготовления свежего катализаторного комплекса 7 — система промывки алкилата 8, 9, 0 — ректификационные агрегаты а — исходный бензол б — азеотропная смесь вода — бензол в — вода г — обезвоженный бензол 3 —газы е — циркулирующий катализаторный комплекс ае — этилен з — хлорид алюминия и — свежий катализаторный комплекс к — оборотный бензол л — этилбензол м. — диэтилбензол н — кубовый остаток о — вода на промывку я — сточные воды. [c.54]

    Процесс алкилирования может проводиться в жидкой или в паровой фазе, при температуре от 95°С до 450°С и мольном отношении бензол/этилен от 2 1 до 6 1. Полученный алкилат содержит 12—35% массовых этилбензола, 55—85% массовых бензола и 2,5—8%массовых диэтилбензола. Современные установки по производству этилбензола достигают мощности 740 тыс. т продукта в год. Выход этилбензола в расчете на бензол составляет 95%, при расходных коэффициентах на 1 т продукта бензол 0,77 т, этилен 0,3 т, хлорид алюминия 0,03 т. [c.339]

    В газовой фазе при умеренной температуре и в отсутствие катализаторов или активной поверхности реакции между этиленом и хлором не проис ходит. Реакцию в газовой фазе использовали для выделения этилена из, коксовых газов, содержащих всего 2% этого олефина. Катализаторами служили хлориды металлов на инертных носителях. [c.165]

    Алюминия три.хлорид — этилен этилирование бензол 1, 324 Алюминия три.хлорид — янтарный ангидрид сукцинилирование бензол 1, 358 Алюминия этоксид Генри реакция [c.211]

    В табл. 67 приведены некоторые результаты, лолученные в опытах с перекисью бензоила в качестве источника свободных радикалов. В автоклаве с мешалкой (изготовленном из соответствующего материала) к 100 г 18,5%-ной соляной кислоты добавляют 0,5 г перекиси бензоила и действуют этиленом при начальном давлении 200 ат. После нагрева до 100° давление этилена поддерживают на уровне около 500 ат. Спустя примерно 11 час. образовавшиеся хлористые алкилы обрабатывают эфиром. При этом остается нерастворенной часть продуктов реакции, состоящая из хлоридов высокомолекулярных алкилов, содержащих 40—50 углеродных атомов в молекуле. [c.196]


    Этилбензол в СССР производят алкилированием бензола этиленом в присутствии хлорида алюминия по технологии, аналогичной двухфазному алкилированию бензола пропиленом. За рубежом получили развитие процессы высокотемпературного гомофазного алкилирования бензола этиленом в присутствии растворимых количеств хлорида алюминия (фирма Монсаито-Луммус ) и в присутствии цеолитного катализатора, промоти-рованного фосфором (фирма Мобил-Баджер ), [c.173]

    Процесс высокотемпературного газофазного алкилирования бензола этиленом, разработанный ВНИИолефин, характеризуется более высокими те нико-зкономическими показателями, чем лучшее действующее в СССР производство по двухфазной технологии. Конверсия этилена 99,6%, температура 200 °С, давление в алкилаторе 2,1 МПа, соотношение бензол. этилен равно 3 4, съем этилбензола с 1 М реакционного объема 400 кг. Ведутся исследования по улучшению технико-экономических показателей действующих производств (двухфазный процесс в присутствии хлорида алюминия), уменьшению образования побочных продуктов, нх переработке и утилизации. [c.174]

    Полиалкилбензольная смола — отход производства этилбензола, горючая жидкость темно-коричневого цвета. Примерный состав, % (масс.) диэтилбензол — 20, триэтилбензол — 30, высшие полиалкилбензолы и смолы — 50. На отдельных предприятиях образуется до 75 кг на 1 т этилбензола. На выход полиалкилбензольной смолы влияют чистота исходного сырья — этнлена и бензола (отсутствие ацетиленовых, сернистых и других вредных примесей), качество катализатора — хлорида алюминия, а также режим алкилирования — температура и продолжительность пребывания в реакторе, соотношение бензол этилен. [c.174]

    При конденсации 1-хлор-1-метилциклогексана и 1-хлор-1-этилцик-логексана (третичные хлориды) с этиленом в присутствии хлористого алюминия были получены 1-(2-хлорэтил)-1-метилциклогексан и 1-(2-хло1ъ [c.469]

    При конденсации вторичного хлорида (например, изопропилхлорида [47] или циклогексилхлорида [49]) с этиленом в присутствии хлористого алюминия обнаружены продукты взаимодействия одной молекулы хлорида с двумя молекулами олефина. Образование их может быть объяснено следующим образом первичные продукты реакции (изоамилхлорид и 2-циклогексилэтилхлорид, соответственно) содержат третичные атомы углерода, и происходит изомеризация промежуточных ионов карбония до третичных ионов. Так как третичные йоды карбония присоединяются к олефинам гораздо легче, чем вторичные, то образовавшиеся третичные ионы будут присоединяться гораздо быстрее, чем исходные вторичные ионы (изопропил и циклогексил). Поэтому конечные продукты подобны образующимся при конденсации этилена с соответствующими третичными хлоридами 1-хлор-3,3-диметилпентан и 1-(2-хлорэтил)-1-этилциклогексан, [c.220]

    В хлорной воде присоединение хлора идет достаточно медленно для того, чтобы почти количественно образовывался этиленхлоргидрин (см. стр. 370). Реакции олефинов с хлором и бромом в жидкой фазе идут обычно исключительно быстро 130], и применение растворителя, как правило, сказывается благоприятно. Этилен легко хлорируется при низких температурах в дихлорэтаповом растворе, как это применяется в промышленности. Хлориды элементов, образующих с хлором соединения высшей и низшей валентностей, как сурьма, железо, селен, являются эффективными катализаторами присоединения хлора к этилену. Присутствие полярных веществ можот катализировать присоединение галоидов например, реакция брома с этиленом в гааовой фазе сильно ускоряется, если стенки реактора покрыты стеариновой кислотой, но скорость реакции приближается к нулю, если стенки покрыты парафином [64]. Степень замещения хлором при реакции олефинов с хлором, как показано в табл. 3, поразительно велика [80]. Реакция замещения часто сопровождается перемещением двойной связи. [c.364]

    Однако в катализированном кислотами алкилировании продукты, предполагаемые при таком прибавлении, совсем не обязательно находятся в больших количествах. Например, термическое алкилирование изобутана с этиленом дает в четыре раза больше 2,2-диметил бутана, чем 2-метилпентана. Алкилирование в присутствии хлорида алюминия дает 70—90% 2,3-диметилбут тана, 10—25% 2-метилпентана и только незначительное количество 2,2-диметилбутана. Подобно этому, при термическом алкилировании пропилена и изобутана получают 2,2-диметилпентан, в то время как кислотно-катализированное алкилирование дает смесь, содержащую в большей степени 2,3- и 2,4-диметилпентаны. [c.129]

    Некоторые наиболее важные процессы алкилирования ароматики практикуются в промышленности реакция бензола с этиленом с образованием этилбензола, который затем дегидрируется в стирол алкилирование моноядерной ароматики с пропиленом, что дает соответствующие изопропил-производные, которые в свою очередь превращаются в фенол, крезол и т. д. через промежуточные гидроперекиси (т. е. фенол и ацетон от гидроперекиси цимола) алкилирование бензола и нафталина с алкил-хлоридами с длинными цепочками для производства соответствующей алкилароматики, которая сульфируется в ядре серной кислотой (натриевой солью) для применения в очистке и, наконец, алкилирование фенолов с олефинами или алкильными галогенидами с целью получения алкилированных фенолов, использующихся как присадки (или как промежуточные продукты в производстве присадок) к топливам и маслам. Первый и третий процессы проходят в присутствии хлористого алюминия, который наряду с другими галогенидами металлов является наиболее важным [c.133]


    В промышленности приняты следующие процессы жидкофазный процесс синтеза этилбензола на катализаторе AI I3. Процесс ведут в стальных колоннах, облицованных специальными антикоррозионными материалами, реакция идет при температуре кипения реакционной смеси (80—100°С) и атмосферном давлении. В качестве сырья используется бензол со степенью чистоты пе -ниже 99%. Твердый хлорид алюминия прибавляется к реакционной смеси и -в реакторе образуется соответствующее комплексное соединение. Бе-нзол-сырье и бензол-рециркулят после предварительной осушки подаются в реактор. Хлористый водород или хлористый этилен также добавляются в реактор. Жидкие продукты из алкилатора охлаждаются и направляются в отстойник, где -каталитический комплекс отделяется и возвращается в алкилатор. Алкилат промывается водой, затем 20%-пой водной щелочью для нейтрализации НС1, после чего разделяется на -индивидуальные компоненты на стадии ректификации. [c.266]

    Получаемый продукт состоит из 607о диацетата, 35% моноацетата и 5% этиленгликоля с общей селективностью их образования 97%. Катализаторами являются смесь хлоридов палладия и меди, нитрат палладия и особенно ТеОг, промотированный соединениями брома. Сиитез ведут при 160 °С и 2,8 МПа с 60%-ной степенью конверсии этилена и циркуляцией непревращенных газов. Вторая стадия заключается в гидролизе полученной смеси водой при ПО—130°С, когда вырабатывают уксусную кислоту, направляемую на рециркуляцию, и этиленгликоль. При этом суммарный выход этиленгликоля достигает 94% по этилену, что значительно превосходит традиционный способ синтеза. Сообщается о пуске крупных установок производства этиленгликоля по этому методу, но надежных данных по технологии и экономике производства пока нет. [c.454]

    Реакция алкилирования бензола алкилхлоридами в присутствии безводного хлорида алюминия впервые была осуществлена в 1877 г. С. Фриделем и Д. Крафтсом [2]1. В 1878 г. М. БаЛь-сону удалось получить этилбензол алкилированием бензола этиленом при контакте с А1С1з, а в 1895 г, этим же методом был синтезирован изопропилбензол. Исследования по изучению состава и свойств комплексов алкилароматических углеводородов с безводным хлоридом алюминия, проведенные Г. Г. Густавсо-ном, позволили получить исходные материалы, необходимые для дальнейшего изучения механизма реакции алкилирования. [c.5]

    Определенные сложности возникают при выборе технологической схемы производства этилбензола как из числа разработанных и реализованных в промышленност] , так и находящихся в стадии внедрения. Они различаются условиями проведения процесса и применяемыми катализаторами Сопоставительные данные, характеризующие процесс алкилирования бензола этиленом в присутствии хлорида алюминия, фосфорной кислоты на кизельгуре и на алюмосиликате представлены ниже  [c.229]

    На алюмосиликатных катализаторау алкилирование бензола этиленом протекает при высокой температуре — 450 °С и высоком мольном соотношении бензол этилен. При получении этилбензола в присутствии трифторида бора устраняются отмеченные для хлорида алюминия недостатки, что позволяет для алкилирования применять газы с низким содержанием этилена JAO 10%). [c.230]

    Процесс алкилирования бензола этиленом на хлориде алюминия включает в себя следующие стадии приготовление катализаторного комплекса, проведение реакции алкилирования, обработка и разделение продуктов реакции.Шепременным условием достижения хороших результатов является чистота исходных продуктов. Примеси ацетиленовых и диеновых углеводородов, сернистых и кислородсодержащих соединений в оле-финовой фракции и бензоле отравляют катализаторный комплекс, что приводит к повышенному расходу реагентов и катализатора, а также к образованию побочных продуктов, от которых трудно очистить целевой продукт. [c.231]

    Рассмотренные варианты производства этилбензола в нри-сутствии хлорида алюминия имеют свои особенности, но в ос1 о-ве всех процессов лежат общие принципы и им присущи с б-щие недостатки. В системе постоянно имеются три фазы газообразный этилен, ароматические углеводороды и жидкий кат а-лизаторный комплекс. Реакция протекает в катализаторном комплексе, и между ним и органической фазой устанавливается равновесие. Жидкие продукты реакции охлаждают и дйа жидких слоя разделяют. Нижний слой катализаторного комплекса возвращают в реакционную систему. Хлорид алюминкя теряется из системы при растворении в органическом слое игеги выгрузке части отработанного катализаторного комплекса Д1я [c.235]

    Отечественная технология процесса алкилирования бензола этиленом также непрерывно совершенствуется. Во ВНИИоле-фине [226] испытана схема адиабатического алкилирования цод давлением со снятием тепла реакции циркулирующим ка-тализаторным комплексом, концентрация которого в реакционной смеси доводится до 80%. Потери хлорида водорода в комплексе восполняются подачей этилхлорида, что позволяет в [c.238]

    При алкилировании бензола этиленом и пропиленом в присутствии хлорида алюминия образуются такие побочные продукты, как парафиновые углеводороды С4—Сэ, н-пропилбензол н алкилбензолы с числом атомов углерода в алкильной группе, не соответствующем их числу у исходного олефина. Образование диалкилпроизводных, в основном мета- и пара-изоиеров, связывают с протеканием реакций изомеризации, диспропорционирования и переалкилирования изопропил- и диизопро-пилбензолов [232]. Содержание примесей в алкилате растет при повышении температуры реакции, концентрации катализатора и времени его контакта с алкилатом. Кинетические характеристики процесса образования примесей в интервале температур от 100 до 130 °С представлены на рис 6.10. [c.248]

    Сиектор и др. [10] изучали реакцию оксихлорирования этилена в водной среде. Реакция протекала очень хорошо, если в раствор вводили некоторое количество хлорида меди для образования комплекса с этиленом. Продолжая эту работу, Хейие-мапн [И] показал, что можно значительно уменьшить индук-цпонный иерпод гетерогенной реакции, если к катализирующему ее дихлориду меди добавить хлорид меди. [c.260]

    Использование этана (процесс Trans at) в качестве исходного сырья можно рассматривать как следующий этап в усовершенствовании пронзводства винил-хлорида суммарные стоимости исходного сырья для трех процессов — комбинированного (ацетилен этилен), сбалансированного (этилен) и этанового, составляют соответственно 0,092 0,074 и 0,048 долл./кг. [c.409]

    Этилен 0,06191 Сложные эфиры Нитрози л хлорид 0,02991 [c.158]

    При температурах 20 и 40 С изучена растворимость твердых фаз в тройных системах из хлорида гадолиния, воды и дихлоридов гидразина, этилен-диамина. Установлено, что обе системы относятся к системам простого эвто-нического типа с эвтоническими растворами, насыщенными безводными ди-хлоридами аминов и кристаллогидратом хлорида гадолиния. [c.186]

    Взаимодействием нафталина с этилбензолом или с этиленом в присутствии л(-ксилола и хлорида алюминия можно получать 2-этилнафталин и далее 2-винилнафталин [107]. Полимеры 2-ви-нилнафталина и сополимеры со стиролом имеют достаточно высокую механическую прочность и теплостойкость, 2-винилнафталин применяется также в производстве ионообменных смол. Окислением 2,6-диметилнафталина получают 2,6-нафталиндикарбоно-вую кислоту — сырье для полиэфирных волокон более термо- и водостойких, чем полиэтилентерефталат [108]. Алкилированием нафталина хлоралканами производятся парафлоу — депрессоры, понижающие температуру застывания смазочных масел. Нафталин может использоваться также в качестве сырья для синтеза антра-хинона [109]. [c.339]

    При взаимодействии с метиловым эфиром /-лейцилглицина сульфохлорид превращается в соединение, не содержащее галоида [498]. Последнее, как и соединение, полученное взаимодействием этилен-сульфохлорида с анилином, является, вероятно, амидом этилен-сульфокислоты. Удовлетворительным методом приготовления ненасыщенной кислоты может служить нагревание этан-1,2-дисульфо-хлорида с пятикратным количеством воды с обратным холодильником  [c.189]

    Необходимо следить, чтобы температура жидкофазной реакции не превышала 50° этим предотвращаются процессы замещения водорода хлором, которые приводят к образованию полихлоридов. Реакцию катализируют, хлориды металлов в патентах рекомендуется применять 0,1—0,5% хлорного железа, проводя процесс при 25° и атмосферном давлении. По одному из промышленных методов [1] этилен и хлоо пропускают при 50° и 6 ата в ди-хпорэтан в присутствии хлорного железа как катализатора. Продукты реакции промывают водой для удаления хлорного железа, сушат и перегоняют. Степень превращения этилена составляет 98%, а выход дихлорэтана превышает 95%. Описано также взаимодействие 99%-ного этилена с хлором в среде дихлорэтана, который циркулировал в длинных узких трубках, охлаждаемых водой [2]. [c.165]


Смотреть страницы где упоминается термин Хлориды этилена: [c.143]    [c.144]    [c.488]    [c.144]    [c.488]    [c.170]    [c.319]    [c.74]    [c.630]    [c.232]    [c.233]    [c.239]    [c.1142]    [c.55]    [c.332]    [c.308]   
Химия и технология основного органического и нефтехимического синтеза (1971) -- [ c.151 , c.152 ]

Теория технологических процессов основного органического и нефтехимического синтеза Издание 2 (1975) -- [ c.141 , c.146 , c.147 ]




ПОИСК







© 2025 chem21.info Реклама на сайте