Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Алюминий ацетилацетон

    Методы удаления металлов с поверхности катализатора обработкой их различными веществами (азотнокислым, хлористым или сернокислым алюминием, ацетилацетоном, дноксаном или водными растворами минеральных и органических кислот и щелочей) не дали достаточно хороших результатов и не получили распространения в промышленной практике. Уменьшить отложение металлов на катализаторах лучше всего можно предварительной очисткой сырья. Цеолитсодержащие катализаторы в процессе работы значительно меньше изменяются, чем аморфные так, катализатор ЦЕОКАР-2 при одном из испытаний [26] имел сл. дую-. щие показатели N [c.65]


    Для расщепления на оптические антиподы ацетилацетона-тов трехвалентных хрома и кобальта использована также окись алюминия, которая после обработки (+)-винной кислотой приобрела свойства асимметрического адсорбента [12]. [c.670]

    Хелатные соединения. Ацетилацетон образует с медью, никелем, бериллием, а также алюминием, хромом, железом и др. соединения следующего строения  [c.217]

    Ацетилацетон был получен взаимодействием хлористого ацетила с хлористым алюминием с последующими гидролизом и конденсацией ацетона с этилацетатом под действием натрия, амида натрия и этилата натрия , а также взаимодействием ацетона с уксусным ангидридом в присутствии трехфтористого бора . [c.96]

    Максимальное экстрагирование ацетилацетоната алюминия А1(С5Н,02)з наблюдается при pH >4 [11981 (рис. 34). Как и в случае экстрагирования купферонатов, с помощью ацетилацетона при pH О от алюминия могут быть отделены в виде ацетилацетона-тов многие элементы сам алюминий может быть отделен в виде ацетилацетоната от Са, М , Мп и других Миллер и Чалмерс [9701 использовали ацетилацетон для отделения алюминия от других элементов при микроанализе силикатов (из навесок 10 мг). [c.179]

    Возможно обнаружение методом круговой тонкослойной хроматографии [1027]. На окиси алюминия золото(П1), платиновые металлы и медь имеют различные величины при использовании в качестве растворителя смеси ацетон — ацетилацетон — 2 М НС1 (100 10 3). Величины Rf НЬ 0,00 Ни 0,28 Р1 0,30 Аи 0,51 Оз 0,62 Р(1 0,90 1г 0,95 Си 1,00. Проявитель для золота — рубеановодородная кислота. Метод позволяет разделить и обнаружить за [c.75]

    Ацетилацетонат индия хорошо экстрагируется ацетилацетоном при pH ]>1 [426]. Галлий и алюминий экстрагируются при несколько меньшем pH. Кривые экстракции, показывающие зависимость экстрагируемости А1, Са и 1п ацетилацетоном от pH (при постоянной концентрации ацетилацетона), имеют различный наклон, хотя теоретически можно было бы ожидать одинакового наклона [426]. [c.152]

    Разделить индий, галлий и алюминий экстракцией ацетилацетоном, по-видимому, невозможно. Однако существует возможность отделить индий от цинка, который начинает экстрагироваться при pH > 3. [c.152]

    Совместно с шестивалентным молибденом экстрагируются смесью (1 1) ацетилацетона и хлороформа [1061] алюминий, железо, ванадий и титан. Гидратированные ионы трехвалентного хрома ие взаимодействуют с ацетилацетоном и не экстрагируются. Это позволяет отделять молибден, алюминий, железо, ванадий и титан от хрома. Отделение производят при pH водной фазы 2,0. [c.53]

    М. Определению следовых количеств хрома не мешают щелочноземельные элементы, магний и кобальт. Мешающее влияние молибдена устраняют введением небольших количеств маннита алюминий и железо отделяют экстракцией смесью ацетилацетона с хлороформом. [c.57]


    В присутствии комплексона III экстракцией ацетилацетоном можно отделить до 70 мг железа и алюминия без существенного изменения чувствительности метода. Сильно мешают фториды, фосфаты, цитраты. Са, Sr, Ва, Zn, Сг, Мп, Си, U и другие элементы могут присутствовать в количестве до 1 мг. [c.82]

    Алюминий и железо в слабокислой и слабощелочной среде не экстрагируются при pH 12 они извлекаются в органическую фазу. Очевидно, это связано с образованием гидроксо-комплексов [MY(0H)]2-, которые обладают значительно меньшей устойчивостью. Ослабление устойчивости комплексонатов приводит к образованию более прочных комплексов трехвалентных металлов с ацетилацетоном, которые могут быть экстрагированы. 4— 20 мг ВеО из смеси с алюминием и железом отделяются практически полностью, что доказано при помощи радиоизотопа Fe и колориметрически. Реэкстракция бериллия может быть осуществлена соляной кислотой. [c.128]

    К оставшемуся после отделения Ве раствору прибавляют 4—5 мл конц. аммиака, 5 мл ацетилацетона, 7 мл U и экстрагируют алюминий, повторяя эту операцию трижды. Реэкстракцию алюминия в водный слой производят также соляной кислотой, подобно бериллию, [c.128]

    Подобным же образом можно получать ацетилацетонат алюминия из основной соли алюминия и ацетилацетона или же из [c.83]

    Ацетилацетон образует соединения с бериллием (т. пл. 108°, т. кип. 270°), с алюминием (т. пл. 193°, т. кип. 314°), с хромом (т. кип. 340°) и с другими многовалентными металлами. Эти соединения имеют характер неэлектролитов, они летучи и практически нерастворимы в воде, но растворимы в органических растворителях. [c.71]

    Типичный пример — разделение железа, алюминия и марганца нри помощи 8-оксихинолина [445]. Железо извлекают хлороформом при pH 2,8, алюминий и марганец в этих условиях не экстрагируются. Увеличивают затем pH до 5,0 и переводят в органическую фазу алюминий, отделяя его таким образом от марганца. Последний извлекают при pH 10. Аналогичным образом можно отделять, скажем, торий от редкоземельных элементов при pH 5 ацетилацетоном в четыреххлористом углероде редкоземельны е элементы в интервале pH 1—8 не экстрагируются [446]. При помощи раствора дитизона в ССЦ в результате последовательного изменения pH хорошо разделяются медь, цинк, никель и кобальт. Медь извлекают при pH 2,5—2,8, цинк — при pH 4,8—5,0, а никель и свинец — из слабощелочного раствора, содержащего цитрат [447]. [c.155]

    Об обработке отравленного катализатора ацетилацетоном в литературе встречаются разноречивые данные. Известен патент [346], в котором предлагается метод реактивации отравленного катализатора ацетилацетоном. Эксперименты были проведены на катализаторе, состоящем из 90,85 вес. % окиси кремния, 9 вес. % окиси алюминия и 0,15 вес. % окиси хрома и отравленном 0,01 вес. % никеля при работе в течение 141 сут на смеси калифорнийских газойлей на промышленной крекинг-установке с движущимся слоем катализатора. Обрабатывали 200 г этого катализатора 300 мл ацетилацетона при кипении с обратным холодильником 4 и 16 ч, после чего катализатор отделяли от ацетилацетона, промывали, сущили и прокаливали при 537 С. Ацетилацетоном очищали также более загрязненный синтетический катализатор, содержащий около 91% окиси кремния, 9% окиси алюминия и приблизительно 255-10 % никеля, а также пробу природного катализатора, активированную кислотой, — монтмориллонитовую глину, которая содержала около 190-10 " % никеля. Эту пробу (100 г) обрабатывали 130—160 мл ацетилацетона 4 ч. Затем катализатор отделяли от ацетилацетона, сущили, прокаливали при 760 °С и обрабатывали паром 10 ч при 650 °С. Результаты крекинга после обработки катализатора по методу Кат-А приведены в табл. 58. [c.218]

    Различные комплексные металлические соли ацетилацетона обладают характерными свойствами например, соединения меди окрашены в синий цвет и растворимы в хлороформе, соли железа имеют ярко-красную окраску, а ацетилацетонаты алюминия (т. кип. 314°) и бериллия (т. кип. 270°) представляют собой летучие, перегоняющиеся вещества. Строение этих солей, согласно К00рдинащ 0нн0му учению Вернера, мо Кно представить следующим образом  [c.321]

    Комплексные соединения элементов подгруппы галлия широко используются для их количественного определения, разделения и очи-стки. Так, из растворов (6—8 М) галогеноводородных кислот элементы подгруппы галлия легко экстрагируются органическими растворителями в виде Н[М Т4], чем пользуются при их отделении от сопутствующих элементов, например алюминия, который в этих условиях образует неэкстрагирующиеся анионные комплексы состава [А1Г (Н20)б-п] Комплексные соединения с купфероном, 8-оксихинолином, этиленди-аминтетраацетатом используются для количественного определения элементов, а с ацетилацетоном и его производными — для получения окисных пленок, проведения транспортных реакций, а также для очистки и разделения смесей элементов подгруппы галлия. [c.179]

    Ацетилацетонат скандия получают, добавляя аммиачный раствор ацетилацетона к водному раствору соли скандия. Выпавший осадок после фильтрования и высушивания сублимируют в вакууме (10" мм рт. ст.) при 170°. Таким путем удается очистить 70%-ную окись скандия (содержащую 8% 2гОг, 9% ТЬОг, 2% УгОд, 7% УЬгОз) практически полностью от 2г, НГ, ТЬ (содержание в конечном продукте <0,1%) и снизить содержание 263 до 0,2—0,3% [19]. Применение метода для очистки большого количества скандия ограничивает относительно высокая цена реактива. Недостаток его также — невысокий выход чистого скандия и невозможность отделить от алюминия, железа и бериллия. [c.24]


    При нагревании смеси до 70° С в течение 30—60 мин остатки катализатора разлагаются и переходят в растворимые соединения (по всей вероятности, в А1(0К)з и Т1С1з-6КОН). Затем производят центрифугирование маточного раствора, который наряду с остатками катализатора содержит и атактические фракции. Отжатый полимер заливают чистым растворителем и снова подают на центрифугу. После двух- или трехкратного повторения цикла экстракции и центрифугирования достигают очень хороших результатов. Во многих патентах для отмывки остатков катализатора в водной и безводной среде предлагаются соединения, образующие устойчивые комплексы с алюминием и титаном (гликоль, ацетилацетон, щавелевая и лимонная кислоты и т. п.). [c.52]

    Прн pH < 3 волна алюминия маскируется волной водорода. Большие значения pH лимитируются гидролром солей алюминия, вследствие чего пропорциональная зависимость между концентрацией алюминия и диффузионным током не наблюдается. Успех прямого полярографического определения алюминия зависит, следовательно, от очень строгого контроля pH. Оптимальная среда pH 3,5— 4,0. Интервал pH очень узок и, кроме того, он меняется в зависимости от концентрации алюминия. Б качестве фона предлагались различные электролиты хлориды калия, натрия [114], кальция 1173, 460, 1111], магния [1040], бария [1078] и лития глюконат кальция [47], хлорид тетрабутиламмония [1221], тетраалкиламмоний [806, 890], смесь диметилсульфоксида и ацетилацетона [782], салицилат натрия и др. [c.142]

    Алюминия гидросиликат (монтмориллонит) К-10, 3-4 Алюминия изопропилат Р-8д Амидосульфоновая кислота Н-16, Н-2а, Н-96 2-Амино-2-дезокси-о-о-глюкозы гидрохлорид Р-19а 4-Амино-М,Ы-диметиланилин Н-8 2-Амино-2-метилпропанол М-35а 6-Аминопенициллановая кислота Р-236 (—)-о-а-Аминофенилуксусная кислота Р-23а Аммония гексафторфосфат М-ЗОв Анилина гидрохлорид Н-За Анисовая (4-метоксибензойная) кислота К-50а Антраниловая кислота И-13, К-42 Ацетальдегида диметилацеталь М-25 Ацетилацетон М-29, М-ЗОа а-Ацетил-у-бутиролактон Л-ба [c.654]

    Ацетилацетонат алюминия был впервые приготовлен Комбом [1—3] при обработке соляной кислотой смеси гидроокиси алюминия и ацетилацетона. Гач [4] получил это соединение действием амальгамы алюминия на ацетилацетон, а Урбен и Дебирн [5] исходили из безводного хлористого алюминия и ацетилацетона. Рекомендуемая методика была предложена Бильцем [6]. [c.27]

    Авторы работы [135] изучали возможность удаления алюминия из каркаса под действием ацетилацетона. Вначале цеолиты типа X и Y превращают в аммонийные формы, используя соль аммония типа NH4 I. [c.521]

    Алюминий частично экстрагируется хлороформом даже в присутствии комплексона П1. Более полное отделение бериллия от алюминия достигается при помощи теноилтрифторацетона, однако скорость образования теноилтрифторацетоната значительно меньше, чем ацетилацетоната бериллия [223, 394]. Экстракционно-фотометри-ческий метод с использованием ацетилацетона был применен для определения следовых количеств бериллия в чугуне и сталях 410], в алюминиевых и магниевых сплавах [411, 411а  [c.83]

    Описаны методы экстракции бериллия в виде соединения с -дикетонами (ацетилацетоном [185, 188, 397—399, 575—583], теноилтрифторацетоном [213, 584]) и в виде солей жирных кислот— масляной и перфторхмасляной [585—589]. Экстракционные методы использованы для выделения следовых количеств бериллия из органических материалов [433, 577, 578], отделения бериллия от алюминия и железа [204, 213, 575], а также определения его в сплавах [575] и рудах [587], для выделения и очистки радиобериллия Ве [583, 584]. [c.127]

    Ацетилацетонат алюминия. Его получают из хлористого алюминия, аммиака и ацетилацетона, растворенного в абсолютном спирте. После выдерживания реакционной массы при неремешива-нии в течение 2 ч, отфильтровывают КН4С1, а из этанольного раствора ацетилацетоната алюминия отгоняют С2Н5ОН [92, 93]. [c.83]

    Ацетилацетонат марганца получается реакцией соли марганца с ацетилацетоном и карбонатом натрия или обработкой ацетил-ацетонатом алюминия в органическом растворителе [107]. Он представляет собой коричневый моноклииический кристаллический продукт с т. пл. 172° С, растворимый в органических растворителях, нерастворимый в воде и устойчивый на воздухе. [c.84]

    Ряд р-дикарбонильных соединений разделен [130] также на незакрепленном слое силикагеля различно активности в системах ацетон — метанол (10 1), изопропиловый спирт и бензол — этилацетат (1 1). На незакренленном слое окиси алюминия в системе гексан — ацетон (4 1) разделен [118] ряд соединений со следующим значением В, для диацетонового спирта — 0,36 диацетила — 0,76 ацетилацетона — 0,03 ацетош л-ацетона — 0,40. [c.61]

    BpaHAt. Нас также интересовала возможность разделения ионов металлов. В связи с этим год или два назад мы пытались разделять с помощью хроматографии хелатные соединения металлов. Оборудование было очень примитивным и не приспособленным для работы при температурах выше 225°. При 210° на колонке длиной 92 см с силиконом на целите мы разделяли при весьма коротких временах удерживания ацетилацетонаты бериллия, алюминия и хрома. Они Вводились в виде растворов в бензоле или же в самом ацетилацетоне оба эти вещества оказались подходящими растворителями. [c.393]

    А1(0К)з + (п + 1)Н20 — R0[-Al(0R)0-] H + 2nR0H Т. к. все алкоксильные группы, связанные с атомом алюминия, гидролизуются примерно с одинаковой скоростью, образующиеся полимеры имеют, как правило, разветвленное строение. Эти полимеры мало устойчивы к действию воды, к-рая вызывает отщепление содержащейся в боковых цепях полимера алкоксильной группы и приводит к образованию нерастворимых полимеров. Большой интерес представляют А. п. структуры I, получаемые гидролизом таких алкоголятов А1, в к-рых одна из алкоксильных групп имеет внутрикомплексную связь с атомом Al или менее склонна к гидролизу в связи с пространственными затруднениями. Полимеры I получают гидролизом алкоголятов алюминия, предварительно обработанных ацетоуксусным эфиром или ацетилацетоном. [c.52]

    В противоположность металлическому полонию его соединения образуют смешанные кристаллы с соответствующими соединениями теллура. Соли полония в водном растворе взаимодействуют с дитиокарбаминатами натрия типа NaS- S-NR2 (R — алкил) с образованием недиссоциированных, растворимых в хлороформе комплексных соединений. Вместе с аналогичными комплексными, соединениями никеля(П), кобаль-та(1П) и висмута(П1) из раствора соосаждаются даже следы полония. Однако в качестве носителей (см. т. II) для соединений полония чаще всего используют соединения теллура. С ацетилацетоном СН2(СО СНз)2 полоний образует соединение, которое, вероятно, представляет собой внутреннюю комплексную соль четырехъалвт -ного полония, так как оно образует смешанные кристаллы с ацетилацетонатом тория ТЬ[СН(СО-СНз)з]4 и может быть отделено от ацетилацетоната алюминия А1[СН(СО-СНз)2)з, если оно осаждено с ацетилацетонатом тория. [c.809]

    Многие свойства бериллия и его соединений похожи на соответствующие характеристики алюминия и его соединений. Так, органические аналитические реагенты, которые употребляются для анализа алюминия, часто оказываются применимыми и в аналитической химии бериллия. Бериллий отличается более высоким сродством к кислороду, чем к азоту по этой причине его комплексы с органическими реагентами, содержащими донорные атомы 0,0, такими, как морин, алюминон и ацетилацетон, как правило, более устойчивы, чем комплексы, образованные бериллием с реагентами (например, 8-тжсихинолином), у которых роль донорных атомов играют 0,Ы. Бериллий можно маскировать фторидом, ССК и тартратом, однако в обычных условиях к маскированию не прибегают. Мешающие элементы, которые сопровождают бериллий, отделяются осаждением (например, купферроном) или экстракцией (например, оксином, купроном и т. д.). [c.413]

    От енольной формы СНз—СО—СН = С(ОН)—СНз производится ряд интересных металлических соединений ацетилаце-тона—ацетилацетонатов железа, меди, алюминия, бериллия, хрома, кобальта и др. Они легко образуются при смешении с ацетилацетоном свежеосажденных гидроокисей этих металлов, взвешенных в воде. Обычно сначала осадки гидроокисей переходят в раствор, из которого затем выделяются труднорастворимые ацетилацетонаты. Они легко растворимы в органических растворителях и являются неэлектролитами (или лишь очень слабо диссоциированы). Многие из них способны возгоняться и даже перегоняться без разложения. Например, ацетилацето-нат алюминия А1(С5Н70г)з кипит при 314°С, ацетилацетонат бериллия Ве(С5Н70г)г кипит при 270° С. Очень часто окраска этих веществ отличается от окраски обычных солей соответствующих металлов. Все указанные особенности резко отличают эти соединения от типичных солей с ионной связью между катионом металла и анионом. [c.507]

    Детально разработаны методы анализа летучих хелатов металлов (комплексов с ацетилацетоном, три- и гексафторацетил-ацетоном и т. д.) [224]. Одним из таких методов, в частности, определяли бериллий, хром и алюминий. Предел обнаружения для электронозахватного детектора по хрому составлял 2-10- мг. [c.236]

    Представляет интерес определение металлов в виде их комплексов с ацетилацетоном, три- и гексафторацетилацетоном184"188. Этим методом определяли бериллий, хром и алюминий. Чувствительность электронозахватного детектора по хрому составляет 2 10 9 мг. [c.276]


Смотреть страницы где упоминается термин Алюминий ацетилацетон: [c.217]    [c.204]    [c.218]    [c.297]    [c.246]    [c.82]    [c.180]    [c.643]    [c.380]    [c.350]    [c.85]    [c.697]    [c.240]   
Справочник по экстракции (1972) -- [ c.183 ]




ПОИСК





Смотрите так же термины и статьи:

Ацетилацетон



© 2025 chem21.info Реклама на сайте