Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Алюминий характеристики

    Во ВНИИ НП разработаны промоторы дожига СО на основе оксида алюминия, характеристики которых приведены в табл. 41 [144]. В этой же таблице представлены показатели работы регенератора без и с добавлением промотора КО-4 на полупромышленной установке крекинга производительностью 40 т/сут (сырье — вакуумный дистиллят западно-сибирской нефти). [c.104]


    По вопросам, связанным с применением окиси алюминия АЬОз или гидроокиси алюминия А1(0Н)з, существует большое число патентов. Для окиси алюминия характеристикой первостепенной важности является размер частиц, так как абразивные ее свойства возрастают по мере увеличения размера частиц. В комбинации с мелом или фосфатами окись алюминия используется только в небольших количествах. [c.422]

    С целью десульфирования катализатора лигроин подвергают гидрированию в реакторе с неподвижным слоем катализатора при стационарных адиабатических условиях насадка представляет собой пористые шарики размером 3,175 мм из кобальт-молибденового катализатора, нанесенного на окись алюминия, Характеристики процесса питание — плотность 0,7803 г/см , температура кипения — от 157,22 до 254,44 °С, средняя молекулярная масса 166 давление — 2,9 МПа средняя температура слоя — 371,11°С скорость подачи питания— 684404 л/сут размеры слоя— внутренний диаметр 1,52 м и высота 6,28 м скорость подачи водорода — 0,535 м /л при температуре 15,56 °С и давлении 0,1 МПа содержание серы в подаваемом лигроине и в образующемся углеводородном продукте — 1,42 и 0,20 %(масс.). [c.284]

    Дальнейшего развития отмеченные выше методы не получили. Гораздо более важное значение имеет электролиз комплексных металлоорганических соединений на свинцовом аноде. Первые работы в этом направлении принадлежат Хейну с сотр. [15—17]. Впоследствии метод подробно исследован Циглером с сотр. [18—27], применившим для синтеза тетраалкилсвинца легко доступные комплексные соединения алюминия. Характеристика некоторых свойств этих веществ приведена в табл. 10. [c.545]

    В зависимости от модификации оксида алюминия изменяются его физико-химические характеристики  [c.74]

    Из числа промышленных адсорбентов для осушки газов применяются силикагель, алюмогель (активированная окись алюминия), активированный боксит и молекулярные сита 4А и 5А. В последнее время молекулярные сита получили широкое распространение пе только для осушки, но и во многих других процессах нефтепереработки и нефтехимии. Молекулярные сита представляют собой кристаллические цеолиты (водные алюмосиликаты кальция, натрия и других металлов), обладающие высокой избирательностью адсорбции по размерам молекул, в результате чего молекулы малых размеров адсорбируются предпочтительно по сравнению с крупными молекулами. В противоположность обычным адсорбентам типа алюмогелей или силикагелей поры в кристаллической решетке молекулярных сит отличаются идеальной однородностью размеров, и поэтому можно количественно отделять мелкие молекулы, проникающие внутрь этих пор, от более крупных. Вследствие того что адсорбция на них представляет собой своеобразное просеивание смесей молекул с их сортировкой по размерам, они получили название молекулярные сита . Характеристика адсорбентов, применяемых для осушки газа, приведена в табл. 31. [c.159]


Рис. 3.5. Характеристики пористой структуры у-оксида алюминия Рис. 3.5. <a href="/info/1682446">Характеристики пористой структуры</a> у-оксида алюминия
    Для выделенных областей дискретизации строится функция распределения диаметра вторичных глобул Z>2i, числа вторичных глобул Nzi и числа первичных глобул во вторичных от радиуса пор г. В качестве примера на рис. 3.5. приведены результаты расчета характеристик строения двух образцов шарикового 7-оксида алюминия, синтезированных в лабораторных условиях. Найденные функции распределения экстраполируются на область изменения радиуса пор, не доступную для экспериментального определения, до выполнения следуюш,их условий а) равенства объема единичной гранулы катализатора (адсорбента) сумме плотного объема всех вторичных глобул и сформированных ими пор б) равенства плотного объема вторичной глобулы сумме плотного объема формирующих ее первичных глобул и сформированных ими пор (объем этих пор для всех областей дискретизации соответствует экспериментальному на начальном (левом) участке кривой распределения объема пор по радиусам либо уточняется путем экстраполяции). [c.146]

    Характеристика групп углеводородов, полученных при разделении вторичных ароматических углеводородов фракции 200—300° С на окиси алюминия [c.203]

    Необходимость отметить, что емкость, представленная кривыми рис. 168, очень близка к емкости монослоя. Последняя определялась при условии, что на поверхности адсорбента удерживается только один слой молекул адсорбируемого вещества. Зная величину поверхности и размер адсорбируемых молекул, можно рассчитать адсорбционную емкость монослоя. По этой методике были определены адсорбционные характеристики всех типов силикагелей, активной окиси алюминия и молекулярных сит. Таким образом, адсорбционная емкость любого адсорбента по любому компоненту зависит от величины его [c.258]

    Техническая характеристика сушилки такого типа, применяемой для сушки сульфата алюминия, приведена ниже  [c.153]

    Продукция. Нефтяной кокс — применяется в производстве анодов и графитированных электродов, используемых для электролитического получения алюминия, стали, магния, хлора и т. д., в производстве карбидов, в ядерной энергетике, в авиационной и ракетной технике, в электро- и радиотехнике, в металлургической промышленности, в производстве цветных металлов в качестве восстановителя и сульфидсодержащего материала. Характеристика коксов приведена в табл. 4.49, 4.50. [c.93]

    Свойства катализаторов оцениваются рядом физико-химических и эмпирических характеристик. Индекс активности косвенно характеризует активность катализатора, он определяется как массовый выход бензина из стандартного сырья в стандартных условиях при крекинге на данном катализаторе. Для аморфных алюмосиликатных катализаторов с низким содержанием окиси алюминия он составляет обычно 32—36, для высокоглиноземистых (содержание АЬОз 25%) индекс активности несколько выше, для цеолитсодержащих он равен 48—52. Для катализаторов из природной глины индекс активности находится в пределах 20—30. Термическая ста- [c.214]

    Термо- и парообработка катализатора может приводить не только к изменению структурных характеристик, но и к фазовым превращениям материала катализатора. Алюмосиликатные гели, содержащие до 30% окиси алюминия, являются аморфными [49]. [c.39]

    Еще одной характеристикой, влияющей на выбор катализатора, является продолжительность его эксплуатации. Как правило, этот показатель для катализаторов на основе окиси алюминия составляет 4-7 лет в зависимости от условий его работы, состава кислых газов и многих других факторов. [c.154]

    Пемза [75, 96, 97] — природный материал, пористая разновидность вулканического стекла. Она представляет собой смесь силикатов натрия, калия, кальция, алюминия, магния, железа и имеет следующие характеристики  [c.135]

    Вторичные ароматические углеводороды фракций 200— 300 °С разделяли на узкие фракции на окиси алюминия. Характеристика этих фракций приведена в табл. 4. Как видно из данных таблицы, с повышением показателя преломления фракций значительно повышается их плотность. Узкие фракции исследовали в ультрафиолетовой и инфракрасной областях поглошения. Спектр поглощения в ультрафиолетовой области для фракции № I вторичных ароматических углеводородов (рис. 1) характеризуется максимумами 2540, 2680, 2730, 2770 А и минимумами 2550, 2710, 2760 А, что свидетельствует о присутствии алкилза- [c.22]

    Осушка газа. Осушка циркуляционного газа на установках каталитического риформинга проводится с помощью активной окиси алюминия. Характеристика различных марок активной окиси алюминия содержится в табл. 6.20. Для осушки газов используют также синтетичесгле цеолиты типа А в калиевой (КА) или натриевой (NaA) форме. [c.328]


    Смолистые вещества, как правило, также ухудшают фильтруемость топлив при нагреве. 3. А. Саблипа и А. А. Гуреев [591 выделили смолистые вещества из керосинов хроматографическим путем на активированной окиси алюминия. Характеристика смолистых веществ приведена в табл. 40. Смолистые вещества добавлялись к углеводородной части топлива и к исходному топливу в различных концентрациях, и затем эти смеси испытывали Н 1 прокачивающей установке [52]. [c.126]

    Элюирующая способность различных систем попуколичественно оценивалась с помощью первичных хроматограмм на анионитной окиси алюминия. Характеристики элюирующей способности согласуются с рядом адсорбируемости. Таблиц 2 иллюстраций 1 библ. 8 назв. [c.320]

    В соответствии с часто высказывавшимся взглядом, что хорошими смазочными свойствами обладают только углеводороды, в молекуле которых имеются циклы, исследовались возможности получения смазочных масел конденсацией высших хлористых алкилов с ароматическими углеводородами. Исходным сырьем для этого применяли газойль с (пределами кипения приблизительно 230—320" , получаемый при синтезе углеводородов по Фишеру — Тропшу, известный под названием когазин П. Этот исходный материал хлорировали и затем подвергали его взаимодействию с ароматическими углеводородами по Фриделю — Крафтсу в присутствии безводного хлористого алюминия. Таким спосо-болМ удавалось получать смазочные масла любой требуемой вязкости, отличавшиеся хорошими низкотемпературными свойствами, стойкостью к окислению и низкой коксуемостью. Однако важнейшая характеристика смазочных масел — их вязкостно-температурная зависимость, выражаемая высотой полюса вязкости или индексом вязкости, для таких масел оказывалась неудовлетворительной. Вязкость этих масел сравнительно круто падает с повышением температуры. Высота полюса вязкости таких масел лежит около 3 индекс вязкости соответственно равен около 30. [c.235]

    Особенно плохую вязкостно-температурную характеристику обнаруживает высоковязкое масло, полученное конденсацией ксилола с тетрахлоркогазином при повторном использовании шлама хлористого алюминия. [c.237]

    Как будет показано ниже, уже простым воздействием хлористого алюминия на хлорированный когазин можно получить смазочные масла, обладающие хорошими характеристиками. При рассмотренном пыше процессе алкилирования нафталина протекают две параллельные и взаимно-конкурирующие реакции, а именно образование смазочного масла в результате собственно алкилирования и образование смазочного масла из одного лишь хлорированного когазина, вероятно, через стадию дегидрохлорироваиия с последующей полимеризацией образующихся олефинов в присутствии хлористого алюминия. Выход смазочного масла оказывается тем больше, чем больше нафталиновых остатков оно содержит. Характеристики смазочного масла в весьма слабой степени зависят от соотношения нафталин хлорированный когазин (см. табл. 84). [c.239]

    Детальные исследования показали, что можно получать синтетические смазочные масла без ароматических углеводородов. Было установлено, что взаимодействием хлористого алюминия с высокомолекулярными хлористыми алкилами без добавки каких-либо дополнительных реагентов можно получать смазочные масла, обладающие весьма хорошими вязкост1ю-температурными характеристиками. [c.240]

    Кремниевая кислота Н2510з легко образует пересыщенные растворы, в которых она постепенно полимеризуется и переходит в коллоидное состояние — гель. При его высушивании образуется пористый продукт — силикагель. Размер и распределение пор, форма зерен силикагеля зависят от технологии его производства. Отечественная промышленность выпускает силикагели марок КСМ, МСМ, ШСК. Первая буква марки силикагеля указывает на размер зерен К — крупный (2,7—7 мм), М — мелкий (0,25— 2 мм), Ш — шихта (1,5—3,6 мм) последняя буква —на пористость силикагеля М — мелкопористый К — крупнопористый. Косвенной характеристикой размера пор может служить насыпная плотность у мелкопористого она достигает 700 г/л, у круп-нопористого — 400—500 г/л. Удельная поверхность пор в зависимости от марки составляет 100—700 м /г. Механическая прочность выше у мелкопористого силикагеля. Качество силикагеля зависит, кроме того, от содержания примесей. Наличие в составе силикагеля оксидов металлов (алюминия, железа, магния и т, п.), являющихся активными катализаторами, вызывает нежелательные явления при регенерации — разложение адсорбированных веществ, образование смол, кокса и т. д., что резко снижает активность силикагеля. [c.89]

    В качестве носителей этих катализаторов также исследовался широкий ассортимент материалов отбеливающие и прокаленные огнеупорные глины, бокситы, силигакель, оксид алюминия, активный уголь, цеолиты и т. п. На заре развития процессов гидрообессеривания большое внимание уделялось наиболее дешевым природным материалам. Однако по мере ужесточения требований к качеству катализаторов, появляется необходимость избежать зависимости от характеристики прнрюдных материалов, непостоянства их качества, даже в масштабе одного месторождения. Все большее предпочтение отдается синтетическим материалам. На базе исследований природы процессов, для которых создаются зти катализаторы, формулируются особые требования к носителям. На практике к настоящему времени круг носителей, как и активных компонентов, резко сужен - наибольшее распрастранение получил оксид алюминия, [c.94]

    В работе [85] приводятся результаты сопоставления АНМ- и АКМ-катализаторов, содержащих активные металлы в количестве, близком к оптимальным, при гидрообессеривании тяжелого остаточного сырья [р4° =0,993, А к = 11,5%, 5с = 3,9% сумма V+Ni 0,02% ]. Катализаторы готовились методом последовательной пропитки растворами солей молибдена, никеля или кобальта, активного оксида алюминия, полученного разложением гидроксида алюминия, осажденного из расхвора нитрата алюминия раствором аммиака. Оксид алюминия перед нанесением на него металлов подвергался модифищ1рованию с целью получения широко-пористой структуры. Ниже приводится характеристика катализаторов  [c.103]

    Синтетические цеолиты как катализаторы начали изучать сравнительно недавно, и пока неясна природа их каталитической активности. Известно, что каталитически малоактивными или неактивными являются цеолиты, содержащие одновалентные ионы металлов. При замене же их на двухвалентные каталитическая активность возрастает, меняются некоторые структурные характеристики.цеолита. Каталитическая активность цеолитов типа резко возрастает с увеличением соотношения 3102 А12О3 — изменение соотношения атомов кремния и алюминия в решетке цеолита влияет на свойства каталитически активных центров. [c.99]

    Отмечено, что разделение на фильтрах суспензий с неньютоновской жидкой фазой исследовано недостаточно [168]. Дано математическое описание процесса разделения суспензии при допущениях, что оседанием частиц в суспензии можно пренебречь, фильтрат является жидкостью Стокса, движение жидкости в порах осадка ламинарное. В частности, установлено, что в координатах д—(йхЩ) - (где п — индекс текучести) получаются прямые линии в соответствии с экспериментами на системах карб-оксиметилцеллюлоза — двуокись кремния или окись алюминия. Отсюда следует, что в этих системах эмпирическая характеристика сопротивления осадка сохраняет постоянную величину в процессе фильтрования. В других экспериментах обнаружено, что удельное сопротивление осадка изменяется с течением времени. [c.58]

    Испытания, проведенные институтом ТатНИПИнефть, показали, что растворы сульфата алюминия обладают хорошими нефтевытесвдющими свойствами в обводненных пластах. При взаимодействии сульфата алюминия с пластовой водой в пористой среде выпадают кристаллы гидрооксида алюминия А1(0Н)з, образуется вязкая масса, которая закупоривает промытые водой каналы, а непромытые нефтенасыщенные зоны подключаются к разработке. Интенсивность выпадения кристаллов гидрооксида алюминия и его вязкость зависят от концентрации сульфата алюминия в воде, от кислотности раствора, температуры времени старения раствора. Характеристика сернокислого алюминия ЛЬ (804)3 приведена ниже. [c.204]

    Относительно недавно в качестве носителей стали использовать специальным образом приготовленную керамику. Применяют керамику на основе а-окиси алюминия (корунда), окиси циркония, силиката циркония (циркона), карборунда, динаса, муллита. Керамические носители инертны, температуростойки и могут изготовляться с диаметром пор 2000—3000 А. Возможность получения широко- и малонористых носителей особенно важна при синтезе катализаторов для получения целевых продуктов, являющихся промежуточными в системе последовательных необратимых реакций, например в реакциях окисления. Характеристики основных керамических носителей даны в работе [32]. [c.187]

    Факторами, определяющими характеристики процесса (активность, селективность), для каждого выбранного катализатора являются условия его реализации (температура, объемная скорость и т.д.). Первым этапом исследований являлось проведение серии экспериментов по изучению влияния перечисленных факторов на поведение катализатора при повышенном содержании сероводорода в исходной газовой смеси. Объектами исследований были у - оксид алюминия (модельный катализатор) и нанесенный на у - оксид алюминия магнийхромоксидный катализатор, успешно зарекомендовавший себя в промышленных процессах окислительного катализа [69]. На рис.4.11 приведены результаты сравнительных исследований окисления сероводорода на алюмо-оксидном и магнийхромовом катализаторах. Видно, что катализатор на основе оксида алюминия не обеспечивает высоких показателей процесса окисления сероводорода выход серы (произведение суммарной конверсии и селективности) не превышает 60% во всем диапазоне исследуемых температур. [c.115]

    В аппаратах с магнитными мелю,щими телами, предложенными в 1965 г. в США и получившими дальнейшее развитие в работах В. А. Абросимова и др., в качестве рабочих элементов используются постоянные твердые магниты (магнитотвердые тела). В отличие от магиито-мягких элементов магнитотвердые элементы во вращающемся поле при определенных условиях приходят в синхронное вращение вокруг своих осей. Материалом мелющих тел служат сплавы типа ЮНДК и феррит бария тела имеют сферическую форму с диаметром от 2 до 16 мм. При двухполюсном вращающемся магнитном поле индуктора, питаемого от промышленной электросети с частотой 50 Гц, частота вращения тел составляет 3000 об/мин. Характеристики типичного аппарата таковы объем рабочей камеры до 100 л, производительность до 1000 кг/ч по оксиду алюминия (AI2O3). [c.113]

    При алкилировании бензола этиленом и пропиленом в присутствии хлорида алюминия образуются такие побочные продукты, как парафиновые углеводороды С4—Сэ, н-пропилбензол н алкилбензолы с числом атомов углерода в алкильной группе, не соответствующем их числу у исходного олефина. Образование диалкилпроизводных, в основном мета- и пара-изоиеров, связывают с протеканием реакций изомеризации, диспропорционирования и переалкилирования изопропил- и диизопро-пилбензолов [232]. Содержание примесей в алкилате растет при повышении температуры реакции, концентрации катализатора и времени его контакта с алкилатом. Кинетические характеристики процесса образования примесей в интервале температур от 100 до 130 °С представлены на рис 6.10. [c.248]

    После формования оксида алюминия его гранулы прокаливают для удаления влаги и повышения прочности. Большинство производителей катализатора отмечают, что используемый в качестве 1 0сителя оксид алюминия должен обладать определенными физическими свойствами. Среди наиболее важных характеристик— площадь поверхности и объем пор. Прокаленные носители из оксида алюминия, как правило, имеют удельную поверхность 200—400 м /г. Поверхность пор должна составлять определенную часть от общей поверхности, что обеспечивает их доступность для молекул газообразных реагентов. По-видимому, наибольшее значение имеют поры диаметром 8—60 нм [22]. Носитель катализатора должен быть очень устойчив к истиранию, чтобы полученный катализатор выдержал операции пропитки, сушки, транспортировки, загрузки в трубки реактора и условия реакции. Размер гранул катализатора также весьма важен, так как влияет на насыпную плотность катализатора в трубках реактора, а следовательно, на активность, приходящуюся на единицу объема реактора. Носитель катализатора контролируют по его физическим свойствам и обычно анализируют на содержание ряда примесей, в частности железа, промотирующего образование побочных продуктов, оксида кремния и серы. [c.272]

    Когда говорят о типах катализаторов, используемых для данной реакции гидрирования, обычно указывают только, что катализатор никелевый или из благородного металла можно сказать, что катализатор принадлежит к группе железа. Однако все эти термины дают весьма неоднозначное описание, в котором соседствуют дезинформация и правда. Например, катализатором группы железа может быть никель, железо или кобальт, причем в одной или нескольких различных формах. Как правило, это нанесенные катализаторы, т. е. полученные осаждением металла на носитель или пропиткой его раствором соли металла. В качестве носителей чаще используют инфузорную землю (кизельгур), порошкообразные оксид кремния и активированный уголь, оксиды магния и редкоземельных элементов, оксид алюминия или молекулярные сита. (Существует много типов окспда алюминия, и каждый из них оказывает свое положительное или отрицательное влияние на получающийся катализатор.) В задачу данной главы не входит описание приготовления катализаторов, которое слишком сложно. Отметим только, что, называя катализатор никелевым, мы не даем ему адекватной характеристики. Даже если назван носитель, то еще нельзя определить, как будет работать катализатор. Свойства катализатора сильно зависят от способа его приготовления, типа носителя, наличия промоторов, введенных сознательно или случайно попавших при осаждении. Способы восстановления и стабилизации катализатора также могут оказать решающее воздействие на его эксплуатационные характеристики, в том числе на активность и селективность. [c.108]

    Подробное описание реактора СР-5 представлено в материалах Комиссии по атомной энергии США [50], некоторые его основные характеристики приведены здесь. Активная зона реактора представляет вертикальный цилиндр из тяжелой воды, высота которого 62 см, и диаметр 62 см. В тяжелую воду помещены 16 тепловыделяющих элементов. С боков и снизу активная зона окружена сначала отражателем из D O толщиной 62 см, затем слоем графита толщиной 62 см. Верхний отражатель из D2O имеет толщину 76 см. Тепловыделяющие элементы собраны из плоских пластин, изготовленных из сплава урана с алюминием (17,5% алюминия и 82,5% урана). При вычислении иредноложим, что объемная доля алюминия в активной зоне fAi = 0,0688 и DjO—i d2O=0i914. Проектная тепловая мощность реактора 1000 кет, на этой мощности температура D O составляет 49 С. [c.228]


Смотреть страницы где упоминается термин Алюминий характеристики: [c.403]    [c.240]    [c.192]    [c.209]    [c.107]    [c.634]    [c.161]    [c.64]    [c.96]    [c.232]    [c.142]   
Общая химия в формулах, определениях, схемах (0) -- [ c.204 ]

Общая химия в формулах, определениях, схемах (1985) -- [ c.204 ]

Общая химия в формулах, определениях, схемах (0) -- [ c.204 ]

Общая и неорганическая химия (1981) -- [ c.32 ]




ПОИСК







© 2025 chem21.info Реклама на сайте