Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Фотосинтез ассимиляция

    Понятие о фотосинтезе. Ассимиляция зелеными частями растений углекислоты из воздуха (за счет энергии солнечного света и при каталитическом воздействии хлорофилла, стр. 595) с образованием углеводов называется фотосинтезом. Фотосинтез — важнейший процесс природы. Механизм его в последние годы в значительной степени выяснен. [c.321]

    Наряду с фотосинтезом ассимиляция углекислого газа в природе осуществляется в процессе хемосинтеза с использованием химической энергии. процессов окисления. Открытие хемосинтеза принадлежит русскому микробиологу С. Н. Виноградскому. [c.201]


    Пищеварение, биологическое окисление, ассимиляция в процессе фотосинтеза, спиртовое брожение, уксуснокислое брожение. [c.75]

    Фотосинтез в зеленых растениях. При процессе ассимиляции или фотосинтеза в зеленых растениях СО2 и вода превращаются в углеводы и молекулярный кислород, причем необходимую для этих процессов энергию дает свет  [c.982]

    Образующийся озон поглощает УФ-радиацию Солнца в области 250—260 нм, губительно действующую на живые организмы. К другой важной фотохимической реакции относится реакция выделения кислорода и ассимиляция диоксида углерода в процессе фотосинтеза. Фотохимическое разложение бромида серебра лежит в основе фотографического процесса. [c.269]

    Фотохимические реакции весьма распространены. Достаточно указать на так называемую реакцию фотосинтеза, протекающую в растениях при участии зеленого пигмента — хлорофилла — при поглощении солнечной радиации. Фотосинтез сводится к ассимиляции оксида углерода (IV) с образованием углеводов и выделением кислорода. Это многостадийный процесс, суммарное уравнение которого можно записать в виде [c.269]

    К фотохимическим относятся реакции, протекающие под действием квантов света. Такие реакции многочисленны, а некоторые из них имеют жизненно важное значение. Фотохимическими являются реакции выделения кислорода и ассимиляции диоксида углерода в процессе фотосинтеза, образование озона из кислорода под действием ультрафиолетового излучения Солнца, природный синтез хлорофилла и т. п. Фотохимическое разложение бромистого серебра лежит в основе фотографического процесса. С фотохимическими реакциями связано явление люминесценции, выцветание красок и т. п. [c.200]

    Растения извлекают из почвы калии, который скапливается преимущественно в молодых побегах. Ионы калия принимают участие в процессе ассимиляции. При его недостатке снижается интенсивность фотосинтеза. Наряду с кальцием и магнием калий регулирует состояние коллоидов протоплазмы. При увеличении содержания калия повышается образование крахмала, сахаров, жиров. Много калия потребляют картофель, свекла, подсолнечник, клевер, лен, табак меньше — рожь, пшеница, овес. Калийные удобрения значительно повышают урожайность. Калий в почве находится в основном в недоступных для растений формах. Несмотря на то что много калия возвращается в почву с навозом, потребность сельского хозяйства в калийных удобрениях очень велика. Почти все калийные удобрения содержат ионы хлора, натрия, магния, которые влияют на рост растений. [c.163]


    Это и объясняет причину совпадения квантового выхода химической реакции (выделение 0 ) и квантового выхода ассимиляции СО2 при фотосинтезе. [c.349]

    Тот факт, что первым продуктом ассимиляции СО2 является Сз-соединение, предполагает, что в качестве акцептора СО2 выступает С2-единица, которая непрерывно регенерируется в процессе фотосинтеза. Однако доказательства в пользу этой гипотезы получены не были. [c.584]

    Образование М. в растениях связано с ассимиляцией ими Oj и происходит в результате фотосинтеза. Молекула СО2 присоединяется к 1,5-дифосфату D-рибулозы в хлоропластах с участием фермента рибулозодифосфат-карбокси-лазы, а образующаяся в результате З-фосфо-О-глицериновая к-та (ф-ла VII) путем дальнейшего восстановления и конденсаций дает D-глюкозу (см. Глюконеогенез) или D-фруктозу при этом регенерируется молекула рибулозодифосфата (цикл Кальвина)  [c.139]

    Улучшение питания железом через корневую систему или через листья проявляется прежде всего в повышении содержания хлорофилла и позеленении листьев Следствием этого является усиление фотосинтеза, улучшение общего состояния растений за счет более интенсивной ассимиляции СОг и нормализации процессов метаболизма, увеличение прироста побегов и площади листьев, числа полноценных побегов, повышение плодоносности зимующих почек. [c.483]

    Зеленые растения осуществляют такой важнейший процесс биосинтеза, как фотосинтез, т.е. они обладают уникальной возможностью аккумулировать энергию солнечного света, переводя ее в энергию химических связей в результате образования углеводов из СО2 и НзО. Биосинтез на основе неорганических соединений, поступающих из окружающей среды, сравнительно простых органических соединений называется ассимиляцией. Клетки, в которых происходят эти процессы, образуют ассимиляционные ткани. Основная масса углеводов затем используется в биосинтезе компонентов древесины, а от 20 до 40% расходуется в процессе дыхания растения, окисляясь до СО2 и Н2О с выделением энергии. Считается, что ежегодно на Земле образуется и разрушается порядка 10 т материала растительных клеток (по некоторым данным от 150 до 200 млрд т), что эквивалентно энергии, на порядок превышающей годовое потребление энергии человечеством. Трудно переоценить значение этого глобального процесса биосинтеза, особенно с учетом того, что побочным продуктом фотосинтеза является кислород. [c.325]

    Хлорофилл принадлежит к группе жирорастворимых пигментов, он растворяется в жирах и органических растворителях. Хлорофилл, как показали работы К. А. Тимирязева и его последователей, играет огромную роль в процессе ассимиляции углекислого газа. Процесс фотосинтеза представляет собой окислительно-восстановительное взаимодействие углекислого газа и воды, идущее в присутствии хлорофилла, который поглощает энергию солнечных лучей. Фотосинтез в настоящее время является главным источником образования органических веществ на Земле. [c.61]

    Углеводы образуются в растениях в ходе фотосинтеза, благодаря ассимиляции хлорофиллом, под действием солнечных лучей, углекислого газа, содержащегося в воздухе, а образующийся при этом кислород выделяется в атмосферу. Углеводы являются первыми органическими веществами в кругообороте углерода в природе. [c.41]

    Механизм ассимиляции СО2 при фотосинтезе восстановительный ЦТК не известен [c.305]

    В ассимиляции Oj по механизму С4-ПУТИ фотосинтеза участвуют  [c.562]

    Последствия загрязнения воды. Загрязнение океанских вод привело к тому, что за последние десятилетия в океане навсегда исчезло около тысячи видов морских животных, резко сократились запасы ценных видов промысловых рыб, ракообразных и моллюсков. Серьёзнейшей проблемой является возможность потери океаном своей стабилизирующей роли в поддержании в равновесии современного состава атмосферного воздуха вследствие угнетения флоры Мирового океана, на долю которой приходится 80% реакций фотосинтеза, осуществляющегося на планете, более 50% годового производства кислорода, около 90% ассимиляции образующегося углекислого газа. Важна роль океана и как источника разнообразной пищевой и промышленной продукции. [c.186]

    Такой цикл, как известно, был открыт у зеленых водорослей, а затем его функционирование было установлено у высших растений, пурпурных бактерий и цианобактерий. Это наиболее распространенный путь автотрофной ассимиляции углекислоты (см. тему Фотосинтез ). [c.166]

    При ассимиляции происходит эндотермическая реакция. Необходимую энергию для этой реакции дает свет, поглощаемый хлорофиллом. При фотосинтезе в присутствии радиоактивной двуокиси углерода хлорофилл становится радиоактивным, т. е. он не только действует как аккумулятор световой энергии, но и участвует в химических реакциях. Это подтверждается опытами, в которых различные виды водорослей подвергали действию света в отсутствие меченой двуокиси углероду, а потом вводили ее. Последующая ассимиляция происходила в темноте почти с такой же скоростью, как и на свету [514, 515]. [c.284]

    А. И. Бах дал объяснение химизма процесса ассимиляции углекислого газа хлорофильными растениями с образова нием сахара, согласно которому в основе этого процесса лежит сопряженная окислительно-восстановительная реакция, происходящая за счет элементов воды. Показал, что источником выделяющегося при ассимиляции молекуляр ного кислорода являются не углекислый газ, как полагали прежде, а перекисные соединения, образующиеся при фотосинтезе, [c.657]


    Фотосинтезы углеводов в растениях. Ассимиляция двуокиси углерода зелеными растениями под влиянием света является единственной реакцией в природе, за счет которой органические вещества образуются из неорганического материала, и, следовательно, опа является источником всего органического на земном шаре. [c.259]

    Согласно одной из старых теорий (А. Байер, 1870 г.), первичным продуктом ассимиляции двуокиси углерода в растениях является формальдегид, в результате полимеризации которого образуется глюкоза, а из последней — крахмал. В результате новых исследований установлено, что формальдегид не возникает в качестве промежуточного продукта в этом синтезе. Таким образом, не существует какой-либо аналогии между описанными выше синтезами и фотосинтезом в растениях. Последний можно изобразить следующим стехиометрическим уравнением  [c.260]

    Следовательно, необходимо 3—4 кванта для восстановления 1 моля СО2 (О. Варбург). В результате проведенных измерений (М. Кальвин, 1955 г.) было установлено, что расход составляет точно 4 кванта в условиях слабой ассимиляции, но что он возрастает до 7—7,5 кванта при очень высокой интенсивности света. В первом случае аденозинтрифосфорная кислота, необходимая для восстановления фосфоглицериновой кислоты, поставляется дыханием, а во втором этот источник оказывается недостаточным, причем расходуются кванты и для производства АТФ согласно схеме фотосинтеза. [c.264]

    Байер впервые предположил (1870), что в процессе фотосинтеза в растениях на первой фазе образуется муравьиный альдегид, и первую стадию ассимиляции двуокиси углерода и воды выразил уравнением [c.295]

    Гидробионты. Экологические последствия реализуются прежде всего в водной среде и заключаются в подавлении жизнедеятельности одноклеточных морских водорослей (при концентрации 0,1 мкг/л), нарущении фотосинтеза, ассимиляции нитратов, фосфатов, аммония, а также в изменении структуры и функциональных характеристик природных сообществ (при концентрации 1 мкг/л). В этом же диапазоне лежат токсические и пороговые концентрации Р. для водных беспозвоночных (чувствительность снижается в ряду ракообразные, моллюски, чер-ви, мщанки). Р. в концентрациях 5—10 мкг/л и выще приводит к нарушению жизнедеятельности на ранних стадиях развития рыб, снижению скорости их роста, подавлению обонятельного анализатора, нарушению клеточного дыхания в жабрах и ферментативной активности печени. [c.174]

    Ранее предполагалось, что описанный выше процесс полимеризации формальдегида до сахаров имеет также значение с физиологической точки зрения и что аналогичным образом происходит образование углеводов при процессах ассимиляции в зеленых растениях (Байер, Вильштеттер и Штолль, Варбург). Однако в настоящее время считают, что при быстром фотосинтезе в качестве одного из первоначальных продуктов реакции образуется фосфоглицериновая кислота Н20зР0СН2СН(0Н)С00Н (Кальвин), из которой в растениях получаются углеводы (стр. 984) [c.212]

    Процессы фотосинтеза весьма детально изучаются в течение ряда лет, однако они еще ни в коей мере не могут считаться окончательно выясненными. В особенности спорной является первая стадия фотосинтеза— образование восстанавливающего первичного продукта под действием света. Мы знаем, что для этого необходимы зеленые красители листьев —хлорофилл а и в некоторых ассимилирующих бактериях соответствуюн1ую роль играет бактериальный хлорофилл . Возможно, что для процессов ассимиляции необходимы также другие пигменты так, неоднократно высказывалось мнение, что в процессах ассимиляции принимает участие -каротин. [c.983]

    ФОТОСИНТЕЗ в природе, образование организмами (высшими растениями, водорослями, нек-рыми бактериями) в-в клеток благодаря энергии света. У большинства организмов происходит при участии хлорофиллов. Первыми стабильными продуктами Ф., образующимися в результате передачи электронов от возбужденных под действием света молекул хлорофилла по электронотранспортной цепи, являются НАД(Ф)Н (см. Никотинамид ные коферменты) и АТФ, Они используются при ассимиляции СО2 и в др. биосинт. процессах. Ф., при к-ром происходит ассимиляция СО2, выражается суммарно ур-нием  [c.632]

    Ассимиляция солнечной энергии, т.е. превращение световой энергии в химическую, стартует с поглощения кванта света светособирающими молекулами (антеннами) на поверхности мембраны. Электронное возбуждение безизлучательно передается специальным молекулам внутри мембраны - димерам хлорофилла. Эти димеры хлорофилла входят в состав молекулярных образований, которые называются РЦ фотосинтеза. РЦ фотосинтеза - это достаточно жесткий молекулярный комплекс (молекулярный аппарат). Далее в РЦ происходит процесс разделения зарядов возбужденный димер хлорофилла отдает электрон первичному акцептору электрона. Этот процесс происходит в пикосекундном диапазоне времен. Например, в РЦ пурпурной бактерии в качестве первичного акцептора выступает бактериофеофитин, электрон живет сотни пикосекунд на фео-фитине и переносится на первичный хинон Рд. [c.106]

    Скорость фотодыхания довольно трудно измерить. Поэтому в литературе часто оперируют другой величиной — точкой СОд-компенса-цииЧ, понимая под эти,м такую концентрацию СО2 (при заданной постоянной интенсивности света), при которой ассимиляция СО2 в ходе фотосинтеза уравновешивается дыханием. Воздух содержит - 0,03% (или 300 МЛН ) СО2. Для обычных сельскохозяйственных Сз-растений точка С02-компенсации составляет 40—60 млн при 25 °С. Для С4-растений эта точка намного ниже, иногда менее 10 млн". Роль данного различия особенно велика при сильном освещении, поскольку при этом содержание СО2 в воздухе над полем растущих растений заметно падает. Точка С02-компенсации в жаркие дни повышается, в результате у Сз-растений в отличие от С4-растений сильно понижается эффективность фотосинтеза. [c.56]

    БИОСИНТЕЗ (от греч Ьюз-жизнь и synthesis-соединение), образование в живых клетках необходимых организму в-в из простых низкомол. неорг и(или) орг соединений Б, в результате к-рого происходит превращение неорг соед, поступающих из окружающей среды, напр Oj при фотосинтезе, N2 при азотфиксации, в сравнительно простые в-ва, наз ассимиляцией Образующиеся в результате этого процесса в-ва используются для Б более сложных молекул, напр витаминов, гормонов, липидов, алкалоидов и биополимеров-белков, нуклеиновых к-т и полисахаридов Подавляющее большинство организмов синтезирует все необходимые для их жизнедеятельности продукты Исключение-нек-рые животные и человек, организм к-рых, напр, не синтезирует ряд витаминов и а-аминокислот Такие в-ва они должны потреблять из внешних источников [c.289]

    Наряду с этой главной линией фотосинтеза идет вторая из части фосфата фруктозы регенерируется дифo фa J рибулозы, необходимый для новой ассимиляции СОз- [c.468]

    Явление аутоокислення имеет большое значение как в биохи мни, так и в органической химии. В биохимических процессах кислород играет большую роль в поддержании жизни, причем его поглощение п утилизация живыми организмами происходит благодаря катализу энзимами. Принято считать, что ассимиляция жирных кислот протекает через промежуточное образование р-кетокислот и их декарбоксилирование. В связи с реакциями фотосинтеза в растительном мире, происходящими в присутствии хлорофилла, следует напомнить о ранее рассмотренных работах Шенка с применением фотосинсибилизаторов для катализа окисления органических соединений при относительно низких температурах. Давно известно, что хранение различных соединений в контакте с воздухом приводит к образованию нежелательных продуктов окисления в результате этих процессов из нефтяных углеводородов образуются продукты окисления и смолы, а пз эфиров ациклических и циклических — взрывчатые вещества. Аутоокисление, часто катализированное, нашло практическое применение в различных промышленных процессах, например, для получения терефталевой кислоты из ксилолов, малеиновой кислоты из бензола и кумилгидроперекиси из кумола в производстве фенола и ацетона. В будущем можно ожидать значительного увеличения числа таких процессов. [c.456]

    К цветным серобактериям относятся пурпурные и зеленые бактерии-литотрофы, имеющие хлорофилл. Источником энергии для автотрофной ассимиляции СОа служит свет. Фотосинтез у них протекает в анаэробных условиях и не сопровождается выделением кислорода. Донором водорода для восстановления СОг у них служит НгЗ, эти организмы — фотоавтотрофы (фотоавто-литотрофы). [c.130]

    Восстановительный пентозофосфатный цикл является основным механизмом автотрофной ассимиляции углекислоты. Последняя у большинства фотосинтезируюших эубактерий восстанавливается с помощью фотохимически образованной ассимиляционной силы — АТФ и восстановителя. Однако и АТФ, и восстановитель (НАДФ Н2 или НАД Н2) образуются в разных метаболических путях. Поэтому нельзя рассматривать восстановительный пентозофосфатный цикл ассимиляции СО2 строго привязанным только к фотосинтезу. У большой группы хемоавтотрофных эубактерий этот путь фиксации СО2 сочетается с темповыми окислительными процессами получения энергии. Важно отметить только, что это основной путь ассимиляции СО2, если последняя служит единственным или главным источником углерода. [c.296]

    У цианобактерий обнаружена способность к бескислородному фотосинтезу, связанная с отключением II фотосистемы при сохранении активности I фотосистемы (см. рис. 75, В). В этих условиях у них возникает потребность в иных, чем Н2О, экзогенных донорах электронов. В качестве последних цианобактерии могут использовать некоторые восстановленные соединения серы (H2S, НагЗгОз), Н2, ряд органических соединений (сахара, кислоты). Так как поток электронов между двумя фотосистемами прерывается, синтез АТФ сопряжен только с циклическим электронным транспортом, связанным с I фотосистемой. Способность к бескислородному фотосинтезу обнаружена у многих цианобактерий из разных групп, но активность фиксации СО2 за счет этого процесса низка, составляя, как правило, несколько процентов от скорости ассимиляции СО2 в условиях функционирования обеих фотосистем. Только некоторые цианобактерии могут расти за счет бескислородного фотосинтеза, например Os illatoria limneti a, вьще-ленная из озера с высоким содержанием сероводорода. Способность цианобактерий переключаться при изменении условий с одного типа фотосинтеза на другой служит иллюстрацией гибкости их светового метаболизма, имеющей важное экологическое значение. [c.314]

    Фотосинтез — образование зелеными растениями, а также фотосинтезирующими микроорганизмами органических веществ клеток из неорганических при участии и за счет энергии солнечного света. Фотосинтез протекаёт с участием поглощающих сеет пигментов, прежде всего хлорофилла. Первыми стабильными продуктами фотосинтеза являются НАД(ф)Н и АТФ. Далее они используются при ассимиляции СО2 и в других биосинтетических процессах. У вьюших растений донором электронов является нр. При этом фотосинтез сопровождается выделением О2. Суммарный процесс фотосинтеза выражается уравнением [c.333]

    В последние годы хроматографические методы были использованы для разделения и выделения радиоактивных элементов, весьма близких по химическим свойствам [17]. Эти методы неоднократно использовались также для фракционирования меченых органических веществ. В обзорной работе Роше, Лисицкого и Михеля [44] показано, как важно использовать в различных хроматографических методах изотопы, в особенности при биохимических исследованиях. Многие авторы описали специальное биохимическое применение разных радиохроматографических методов [2, 14]. Особенное впечатление производят исследования Кальвина [13] по ассимиляции радиоактивного углекислого газа и анализ методом хроматографии на бумаге меченых первичных продуктов фотосинтеза в водорослях и других зеленых растениях. С тех пор как Финк, Дент и Финк [16] описали фотографический способ локализации радиоактивных веществ на бумажной хроматограмме, радио авто графия стала незаменимым вспомогательным средством при исследованиях механизма фотосинтеза [5, 6, 13] и других проблем биохимии. [c.66]

    Синезеленые водоросли способны использовать различные источники-энергии для своего развития (фотосинтез, фоторедукцию, хемосинтез, гетеротрофную и фотогетеротрофную ассимиляцию органических веществ). Поэтому они способны заселять различные биотопы — поверхность, толщу воды, иловые отложения, аэробные, анаэробные участки водохранилищ — и выживать там, где погибают другие хлорофиллсодержащие организмы. Синезеленые водоросли потребляют незначительное количество фосфора для своего развития. С уменьшением его в окружающей среде в клетке аккумулируется органическая сера. Благоприятные факторы внешней среды, а также особенности метаболизма этих водорослей способствуют массовому их. размножению, цикл которого регулярно повторяется. В период актнвиого- [c.189]

    Основные научные работы посвящены изучению механизма фотосинтеза. Показал (1941), что первичный процесс фотосинтеза заключается в фотолизе молекулы воды, в результате чего образуются кислород, выделяющийся в атмосферу, и водород, идущий на восстановление двуокиси углерода. Используя радиоактивный изотоп углерод-14 в качестве метки и метод хроматографии на бумаге, установил последовательность фо-тосинтетического цикла (цикла Кэлвина) ассимиляция двуокиси углерода зеленььми растениями — превращение его в органические вещества — последующее восстановление. Создал (1956) схему полного пути углерода при фотосинтезе, ставшую классической. Предложил модель превращения световой энергии в химическую. Показал, что превращения фосфата пентозы играют большую роль в жизнедеятельности не только растений, но и животных. Изучал вопрос о происхождении и развитии жизни на Земле. [c.279]

    Исследовались продукты фотосиптетической ассимиляции меченной С двуокиси углерода у короткодневных и длиннодневиых растений при разных фотопериодах [135]. При этом показано, что длина дня не оказывает влияния на состав продуктов фотосинтеза у растений с различным фотопериодом. Установлены сходство и различия в продуктах фотосинтеза у растений различных видов [136]. Наиболее обстоятельно исследовано фотосинтетическое включение С в кетокислоты растений [c.84]

    Две важнейшие специфические для растений функции осуществляются фо-тосмитезнруюшимн клетками, которые содержат хлоропласты и служат для всего организма источником органических веществ-продуктов ассимиляции углерода, и всасывающими клетками, которые поглощают из окружающей среды воду и растворенные минеральные вещества. У большинства высших растений эти две функции не могут выполняться одними и теми же клетками, так как для первой из них нужен свет, а вторая осуществляется в толше почвы в темноте. Для каждого из этих процессов требуется и ряд других условий. Фотосинтез, например, должен протекать в особой микросреде, где строго регулируется относительная влажность и содержание СОг. Достигается это с помощью устьиц-особых отверстий в покрытом кутикулой эпидермисе, которые способны открываться и закрываться в зависимости от тургора замыкающих клеток (рис. 19-10). С другой стороны, для эффективного поглощения веществ из почвы нужна очень большая всасывающая поверхность, которую обеспечивают корни необходимы также мембранные транспортные [c.175]

    Сахара, называемые также углеводами, представляют собой многочисленную группу соединений, играющую важную роль в растительной и животной жизни. В растениях сахара образуются с помощью хлорофиллового фотосинтеза-, конечным продуктом этого фотосинтеза является крахмал. Продукты фотосинтеза в растениях давно уже привлекали внимание химиков (Пристли, 1771 Ингенхоус, 1779). Первым, кто высказал общую теорию превращения угольного ангидрида в органические соединения под действием воды и солнечного света был Теодор де С о с с ю р (1767—1845), который с 1794 г. начал исследования ассимиляции СО 2 растениями, изложенные в работе Химические исследования жизнедеятельности растений (1804). Идеи Соссюра были приняты около 1840 г. Либихом и Дюма в 1864 г. Буссенго установил коэффициент ассимиляции и определил отношение, в котором находятся объемы превращающегося угольного ангидрида и выделяемого кислорода это отношение оказалось равным примерно 1 1, как следует из уравнения [c.368]

    Исследования в группе тропана были начаты Под влиянием Альфреда Айнгорна (1857—1917), который открыл новокаин и которому Вильштеттер посвятил докторскую диссертацию эти исследования привели к синтезу кокаина. Работы по изучению ассимиляции угольного ангидрида (в сотрудничестве со Штолем), выполненные С учетом новых взгйядов, выяснили роль хлорофилла в процессе фотосинтеза. Эти работы были собраны Вильштеттером в однотомнике Исследования по ассимиляции угольной кислоты (1918). Исследования хлорофилла, начатые в 1906 г., кроме выделения зеленого пигмента, привели Вильштеттера к установлению химического строения хлорофиллов а ж Ь> [c.370]


Смотреть страницы где упоминается термин Фотосинтез ассимиляция: [c.580]    [c.71]   
Основы биологической химии (1970) -- [ c.2 , c.322 , c.325 , c.327 , c.331 ]

Физиология растений (1980) -- [ c.96 ]




ПОИСК





Смотрите так же термины и статьи:

Фотосинтез



© 2025 chem21.info Реклама на сайте