Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Полипропилен текучесть

    При изучении реологических зависимостей различных полимеров при температурах переработки было замечено, что для каждого метода переработки выделяется отдельная область. При этом для определенной группы полимеров эти области сравнительно узкие. На основе экспериментальных данных по этому принципу состав лена расчетная номограмма для определения температуры расплава термопластов (полиэтилен, полипропилен, полистирол, полиформальдегид и пластифицированный поливинилхлорид) при изготовлении изделий методами экструзии и литья под давлением (рис. 5.48, а). Для удобства расчетов на номограмме нанесена шкала вязкости и шкала показателя текучести расплава. Как видно из номограммы, производство труб или трубчатых заготовок для выдувания осуществляется при более высокой вязкости, чем пленок. Еще меньшей вязкостью должен обладать расплав при литье под давлением. Естественно, что перерабатывать полимеры можно и при иных значениях вязкости, однако при этом возрастает давление в узлах агрегатов, повышаются энергетические затраты и изменяется качество изделий. Следует заметить, что данную номограмму нельзя использовать для всех полимеров. Например, расплавы поликарбоната и полиметилметакрилата имеют высокую вязкость, повышение температуры вызывает их термическую [c.150]


    Наиболее высокой текучестью в размягченном состоянии обладают полиэтилен, полипропилен, полиамиды текучесть пластиката и этролов зависит от количества содержаш,егося в них пластификатора. Наименьшая текучесть характерна для фторопласта-3. [c.539]

    Вследствие наличия третичных углеродных атомов полипропилен более чувствителен к действию кислорода, особенно при повышенных температурах. Этим и объясняется значительно большая склонность полипропилена к старению по сравнению с полиэтиленом. Старение полипропилена протекает с более высокими скоростями и сопровождается резким ухудшением его механических свойств. Поэтому полипропилен применяется только в стабилизированном виде. Стабилизаторы предохраняют полипропилен от разрушения как в процессе переработки, так и во время эксплуатации. Полипропилен меньше, чем полиэтилен, подвержен растрескиванию под воздействием агрессивных сред. Он успешно выдерживает стандартные испытания на растрескивание под напряжением, проводимые в самых разнообразных средах. Стойкость к растрескиванию в 20%-ном водном растворе эмульгатора ОП-7 при 50 °С для полипропилена с показателем текучести расплава 0,5—2,0 г/10 мин, находящегося в напряженном состоянии, более 2000 ч. [c.34]

    Экструзия. С увеличением давления скорости экструзи полипропилена возрастают больше, чем полиэтилена низкого давления, поэтому полипропилен имеет большую текучесть при нормальном экструзионном давлении. Оптимальные температуры экструзии — от 170 до 180° в цилиндре и от 190 до 220° в сопле, в агвисимости от формы изделия. [c.164]

    Для изготовления труб применяется полипропилен с очень низким показателем текучести расплава, причем работают прп телшературах 240—250 С. Полипропиленовые трубы выдерживают окружные напряжения от 60 до 80 кгс/см . Усталостная прочность, вероятно, средняя между усталостной прочностью полиэтилена низкого давления (50 кгс/см ) ц непластифицированного поливинилхлорида (100 кгс/с.м ) трубы из полипропилена становятся хрупкими прп О °С. Особый интерес может представить применение этих труб для нодачи жидкостей при повышенных температурах. [c.304]

    Так, при введении в полипропилен силиконовой жидкости вязкость полимера снижается в десятки раз [230]. Текучесть наполненных композиций полиэтилена высокого давления значительно улучшается при введении в них пластификатора [231], а температура плавления понижается [232]. Циклические углеводороды, используемые в качестве пластификатора полиэтилена, придают ему морозостойкость и улучшают перерабатываемость при экструзии и каландрировании [233]. Введение фталатных пластификаторов (ДБФ, ДОФ) в полиизобутилен снижает аутогезию композиции, однако установлены оптимальные количества пластификаторов при которых аутогезия практически не изменяется для ДБФ — это 7 масс, ч., ДОФ — 10 масс. ч. [234]. [c.167]


    Полипропилен низкой текучести. [c.64]

    Полипропилен более жесткий материал, чем полиэтилен. Его поведение при растяжении еще в большей степени, чем полиэтилена, зависит от скорости приложения нагрузки и от температуры. Чем ниже скорость растяжения полипропилена, тем выше значение показателей механических свойств. При высоких скоростях растяжения разрушающее напряжение при растяжении полипропилена значительно ниже его предела текучести при растяжении. [c.33]

    Полипропилен при нагревании выше температуры текучести образует относительно низковязкие расплавы. Поэтому для нанесения его на поверхность требуется более низкая температура нагрева деталей, чем в случае полиэтиленов, а именно, порядка 210— 250° С. При более высоких температурах вязкость расплавов становится настолько низкой, что полимер стекает с поверхности, образуя неравномерное по толщине покрытие. [c.95]

    В зависимости от способа полимеризации образуется полимер разного стереоизомерного состава. Структура полипропилена может быть нескольких типов (изотактическая, синдиотактическая, атактическая и стереоблочная). Различие между указанными струк-1урами молекулярной цепи обусловливается неодинаковым положением метильной группы у третичного атома углерода. Изотактический и синдиотактический полимеры имеют совершенно регулярно построенные цепи, располагающиеся вдоль винтовой оси (спирали). Структуру называют изотактической, если все метильные группы находятся по одну сторону от воображаемой плоскости главной цепи. Структура с регулярно чередующимся расположением метильных групп по разные стороны главной цепи называется синдиотактической, а структура со стерически нерегулярной последовательностью метпльных групп — атактической. Стереоизомеры различаются между собой по свойствам. Атактический полипропилен представляет собой каучукоподобный продукт с высокой текучестью, стереоблокполимеры обнаруживают уже некоторую прочность, хотя и они обладают свойствами эластомеров. Изотактический полипропилен — вязкий продукт с высоким модулем упругости. Более подробно эти вопросы рассматриваются в гл. 4. [c.50]

    При сварке экструзионным пистолетом в качестве присадки используют гранулированный полипропилен с показателем текучести расплава 0,07—0,15. [c.247]

    Однозначных данных о влиянии содержания аморфной фракции в полипропилене на условия формования и свойства получаемого волокна пока не имеется. Можно отметить, что, как правило, с увеличением содержания аморфной фракции повышается текучесть расплава полипропилена и эластичность получаемого волокна. Одновременно снижается прочность волокна. [c.261]

    Отрицательными свойствами пластических масс являются малая теплопроводность, затрудняющая использование их для изготовления теплообменных поверхностей низкая теплостойкость и для некоторых пластмасс подверженность текучести даже при комнатных температурах. Что же касается относительного удлинения, то пластмассы делятся в этом отношении на две группы. Все фенопласты, полистирол и плексиглас являются хрупкими материалами, удлинение которых мало от 0,2% для фаолита и до 4% для плексигласа. Другую группу представляют фторопласты, полиэтилен, полипропилен и тому подобные материалы, относительное удлинение которых измеряется десятками и сотнями процентов, и осо- [c.63]

    Полипропилен отличается высокой текучестью в узком интервале температур и сравнительно высокой усадкой, равной 3%. Высокие физико-механические свойства полипропилена сохраняются вплоть до температуры его плавления. Отсутствие в молекуле полипропилена полярных групп обусловливает его высокие (не меньшие, чем у полиэтилена) диэлектрические свойства. Изделия из пропилена более теплостойки и форма их более устойчива, чем у изделий из полиэтилена. [c.108]

    Результаты исследований двойного лучепреломления полиолефинов свидетельствуют о том, что выше предела текучести при растяжении при одинаковом удлинении у ПБ наблюдается более высокая степень ориентации по сравнению с полиэтиленом и полипропиленом [82]. При разрушении образца происходит стягивание ориентированных областей, как если бы в этих зонах была аккумулирована упругая энергия. Такое поведение объясняется присутствием свернутых макромолекул внутри кристаллических областей, которые способствуют более широкому распределению напряжений внутри образца [62]. [c.60]

    Полипропилен выпускается в виде гранул или порошка в неокрашенном и окрашенном виде. Различные марки полипропилена отличаются друг от друга в основном показателем текучести расплава. Литьевые марки полипропилена характеризуются следующими показателями  [c.63]

    Полипропилен средней текучести. [c.64]

    Давление литья составляет 800—1400 кГ/см . Характерной особенностью полипропилена является то, что его вязкость в большей степени зависит от градиента скорости, чем от температуры. Поэтому при заполнении формы полипропилен чувствителен к изменению давления. С повышением давления увеличивается текучесть расплава, что улучшает условия течения материала по форме. При формовании тонкостенных изделий и изделий сложной конфигурации часто более целесообразно увеличивать давление, а не температуру, так как это не требует увеличения времени охлаждения изделия в форме. [c.265]


    Очень важно, что при разрушительном действии окисления на полипропилен его текучесть по мере окисления увеличивается. Это можно показать различными методами. На рис. 26 приведена зависимость индекса расплава от продолжительности нагревания при сравнительно низкой температуре (190°). [c.49]

    Полипропилен выходит из экструдера через головку в виде небольших по диаметру прутков, которые после охлаждения разрезаются вращающимися ножами или чаще вращающимся ножом непосредственно на плоскости головки. Операция грануляции может происходить в воде. Этим путем получают гранулы от чечевицеобразной до почти сферической формы, обладающие отличными характеристиками текучести при последующей переработке. Круглые гранулы более пригодны для передачи пневмотранспортом, широко применяемым на большинстве новейших производственных установок. [c.109]

    Легко заметить, что кривая текучести полипропилена поднимается при повышении температуры цилиндра значительно более круто, чем для полиэтилена, так что в тонких сечениях полости формы может быть легко достигнуто лучшее заполнение. Повышение температуры цилиндра при работе с полипропиленом выше 315° не рекомендуется, так как материал начинает разлагаться  [c.147]

    ВОЙ для полипропилена значительно больше. Практический эффект этого явления состоит в том, что когда расплав полипропилена проходит центральный и разводящие литники, где скорость велика, и поступает в полость формы, где скорость снижается, вязкость расплава повыщается прежде, чем он достигнет полного охлаждения. Расплав может быть менее вязким в узких сечениях формы, где требуется ббльшая текучесть, и менее текучим в широких проходах. Благодаря этому свойству материал более равномерно растекается по форме, обнаруживая меньшую склонность к неравномерному заполнению там, где возникает такая опасность из-за неравномерного сечения детали. Это означает также, что полипропилен позволяет максимально использовать новую технику, предусматривающую достижение максимально эффективного давления в форме. [c.149]

    Способность полиэтилена выдерживать длительное нагревание без увеличения текучести используется редко. Полипропилен в этом отношении аналогичен скорее полистиролу или ацетилцеллюлозе. На рис. 62 приводятся данные об изменении текучести при испытании на [c.156]

    Для использования безлитниковой системы необходимо, чтобы термопласт обладал хорошей текучестью при низких техмпературах, низкой удельной теплоемкостью и перерабатывался в широком температурном интервале. Этим требованиям лучше всего удовлетворяют полиэтилен и полистирол. Полипропилен, полиметилметакрилат, полиамиды также используются при безлитниковом литье, но в меньшей степени. [c.241]

    Термическое разложение в условиях экструзии и литья под давлением характеризуется увеличением показателя текучести расплава. Полипропилен, содержащий большое число третичных углеродных атомов, имеет пониженную стойкость, и высокие температуры переработки сказываются на нем сильнее, чем на полиэтилене. В ус.ловиях переработки разложению полимера способствует и напряжение сдвига. У полипроцилена, который в противоположность полиэтилену всегда должен содержать антиоксиданты, термостабилизация чаще всего комбинируется со стабилизацией против окисления, так как многие антиоксиданты и их синергические смеси могут одновременно играть роль и термостабилизаторов. [c.357]

    Для пол>-чения волокна применяют линейный (регулярный) полиэтилен и стереорегулярный (изотактический) полипропилен. В опытном масштабе были получены волокна из сополимеров этилена с пропиленом и из высших полиолефинов. Нерегулярные полиэтилен и полипропилен, а также полистирол, который по многим своим свойствам подобен полиолефинам, почти не нашли практического применения из-за отсутствия сильно полярных групп в макромолекулах. Для большинства полиолефинов характерна текучесть (крип), так как температура начала размягчения их на 50—100° С ниже температуры плавления. [c.203]

    Присутствие нерегулярных (атактических) фракций в полипропилене не допускается даже небольшое содержание этих фракций сильно снижает модуль эластичности и теплостойкость волокон и увеличивает их текучесть на холоду. [c.205]

    Материалы с относительно низкой поверхностной энергией, например полиэтилен, полипропилен, полисилоксаны или металлы, поверхность которых покрыта маслом, хорошо смачиваются только под действием фторсодержащих ПАВ. Например, при добавке фторсодержащих ПАВ к средствам для чистки кухонной посуды или оконных стекол смачивание значительно улучшается, причем высокое качество чистки и блеск достигаются в результате одной операции [71] При добавке 0,1% неионогенного поверхностно-активного вещества в резист для фототравления улучшается смачивание, повышается четкость рисунка и предотвращается появление дефектов [72]. Кроме того, при добавлении неионогенных или анионоактивных фторсодержащих ПАВ в качестве смачивающих агентов в желатиносодержащие растворы для ф отографии достигаются значительно более высокий, чем в случае ранее применявшихся смачивающих агентов, выравнивающий эффект,, лучшая воспроизводимость, исчезновение масляных пятен [ 73 - 75]. Введение фторсодержащих ПАВ в водные инсектицидные аэрозоли увеличивает скорость впитывания, облегчает прилипание капелек к насекомым и повышает процент летальности [ 76 ]. Небольшая добавка этих веществ к краскам снижает их поверхностное натяжение, в результате чего улучшается смачивание поверхности и, что особенно важно, становится возможным нанесение краски на участки, загрязненные маслом [ 77, 78]. Добавка фторсодержащих ПАВ к типографской краске повышает ее текучесть и улучшает выравнивающую способность [ 79]. [c.396]

    Стереоизомеры полипропилена (изотактические, синдиотакти-ческие, атактические и стереоблочные) существенно различаются ио механическим, физическим и химическим свойствам. Атактический полипропилен представляет собой каучукоподобный продукт с высокой текучестью, температура плавления 80° С, плотность 0,85 г см [2], хорошо растворяется в диэтиловом эфире и в холодном н-геитане. Изотактический полипропилен по своим свойствам выгодно отличается от атактического в частности, он обладает более высоким модулем упругости, большей плотностью (0,90—0,91 г см ), высокой температурой плавления (165—170° С) [5], лучшей стойкостью к действию химических реагентов и т. п. В отличие от атактического полимера он растворим лишь в некоторых органических растворителях (тетралине, декалине, ксилоле, толуоле), причем только при температурах выше 100° С. Стереоблок-полимер иолиироиилена прн исследованиях с помощью рентгеновских лучей обнаруживает определенную кристалличность, которая не может быть такой же полной, как у чисто изотактических фракций, поскольку атактические участки вызывают нарушения в кристаллической решетке [4]. [c.64]

    Из этого выражения следует, что разность температур будет тем меньше, чем меньше толщина слоя нагреваемого материала н больше, поверхность теплопередачи и время прогрева материала. Это условие находится в противоречии с гидродинамическими трс бованиямн (с уменьшением сечения и увеличением поверхностей течения в пластикационной системе повышаются потери давления). По мере увеличения размеров узлов пластикации трудности воз-пастают. Если еще учесть, что полипропилен относится к полимерам с относительно невысокой текучестью, то станет ясно, что конструирование узла пластикации представляет собой весьма сложную техническую задачу. [c.217]

    Прядильные устройства с плавильными решетками, обычно применяемые в производстве полиамидных и полиэфирных волокон [30, 31], для формования полипропиленового волокна неприемлемы в силу целого ряда причин. Во-первых, вязкость расплава полипропилена, из которого можно формовать волокно, значительно превышает вязкость расплава полиамидов и полиэфиров. Для снижения вязкости расплав перед формованием волокна гютребова-лось бы нагреть до температуры, при которой полипропилен подвержен очень сильной деструкции. Во-вторых, ввиду более высокой вязкости расплава полипропилена для достижения необходимой текучести требуется гораздо более продолжительная выдержка его при высоких температурах, следствием чего является дальнейшая более глубокая деструкция полимера. Наконец, прядильные устройства, снабженные плавильными решетками, не обеспечивают высокой производительности. [c.238]

    Полиолефиновые клеи получают на основе гомо- и сополимеров этилена или полиизобутилена. Могут содержать наполнители, др. полимеры (атактич. полипропилен, прир. смолы, низкомол. полистирол), модификаторы, придающие повыш. адгезию и текучесть в расплавл. состоянии (малеиновый ангидрид, акриловая к-та, капролактам, воск, парафин) или повыш. теплостойкость полиизобутиленовому клею (дивинилбензол), антиоксидант. Выпускают в виде гранул, пленок, лент, шнуров, порошка, волокон, а поли-изобутиленовый клей-в виде р-ров (напр., в бензине). Полиэтиленовыми клеями соединяют по технологии склеивания клеями-расплавами при 200-210 °С, полиизобутиленовы-ми-по технологии склеивания контактными клеями. Наиб, распространение получили клеи на основе сополимеров этилена с винилацетатом (склеивают при 110-140°С в течение 1-15 с). Применяют для соединения текстильных материалов в швейном произ-ве, при изготовлении упаковочных материалов, в произ-ве обуви, липких лент и др. [c.409]

    В опытах 2 ш 3 сначала при комнатной температуре полимеризуют этилен, а затем при повышенной температуре (89° С) — пропилен. В первой графе приведены данные для полипропилена, полученного в сравнимых условиях. Видно, что по ряду свойств блоксополимер намного превосходит полипропилен. Для сравнения укажем, что предел текучести полиэтилена составляет около 196 кПсм . В опытах 4—7 оба мономера полимеризовали при 89° С и получали различные по составу продукты. По мере возрастания содержания этилена жесткость, индекс расплава и температура хрупкости блоксополимеров уменьшаются. В опытах 7—9 сначала полимеризовали пропилен при 89° С, а затем этилен при 45 (7 и 8) или 89° С (9). Жесткость сополимеров, синтезированных в этих опытах, ниже, чем продуктов, полученных в опытах 4—6. [c.178]

    Полибутен-1 можно перерабатывать на обычных машинах для переработки термопластов методами экструзии, литья под давлением, ротационным литьем, каландрованием или прессованием. Хорошая перерабатываемость, в частности, методом ротационного литья обусловлена более низкой вязкостью расплава по сравнению с другими полиолефинами, что объясняется подвижностью боковых групп. Высокомолекулярный ПБ перерабатывается значительно легче, чем полиэтил или полипропилен такой же молекулярной массы. Полибутен с = 3-10 име при 190°С такой же показа- тель тёкучести расплава, как ПЭ с Мщ = 18 10" [53]. Кривая зависимости текучести расплава от температуры для ПБ значительно круче, чем для ПЭ, и смещена (по сравнению с полипропиленом) в область более низких температур. [c.56]

    Полипропилен (ПП) [10], как и полиэтилен высокой и средней плотности, получают стереоспецифической полимеризацией. Наличие боковых метильных групп при их стереорегулярном расположении увеличивает жесткость цепи и плотность упаковки макромолекул, что вызывает повышение температуры стеклования и текучести по сравнению с полиэтиленом. Полипропилен способен образовывать разнообразные надмолекулярные структуры. Это связано с высокой, епенью кристалличности, асимметричностью и незначительной по- рностью макромолекул. Свойства пленок, получаемых из полипропилена методом экструзии, зависят от режима переработки 111]. [c.17]

    Изготовление изделий формованием представляет собой процесс, при котором лист из термопластичного полимера, нагретый до температуры размягченпя, подвергают вытя <кке, придавая ему необходимую конфигурацию, а затем производят охлаждение. Для формования используют полимерные материалы, имеющие выра кенную область высокоэластичного состояния. Наиболее легко формуются изделия из аморфных полимеров и несколько сложнее > кристаллических. Особенно это относится к поли-этилентерефталату, который в момент вытяжки должен находиться в аморфном состоянии. Если полиэтилентерефталат перегреть, он кристаллизуется и формование становится невозможным. Широко используются также кристаллизующиеся полимеры, такие, как полиэтилен и полипропилен, с небольшими значениями показателя текучести расплава, т. е. имеющие сравнительно высокую вязкость. [c.223]

    Стереоизомеры полипропилена существенно различаются по механическим, физическим и химическим свойствам. Атактический полипропилен представляет собой каучукоподобный материал с высокой текучестью, температурой плавления — около 80°С, плотностью— 850 кг/м , хорошей растворимостью в диэтиловом эфире. Изотактический полипропилен по своим свойствам выгодно отличается от атактического, а именно он обладает высоким модулем упругости, большей плотностью — 910 кг/м , высокой температурой плавления — 165—170°С и лучшей стойкостью к действию химических реагентов. Стереоблокполимер полипропилена при исследовании с помощью рентгеновых лучей обнаруживает определенную кристалличность, которая не может быть такой же полной, как у чисто изотактических фракций, поскольку атакти геские участки вызывают нарушение в кристаллической решетке. [c.53]

    Полипропилен значительно более жесткий материал, чем полиэтилен. Кроме того, его поведение при растяжении еще в большей степени, чем поли втилена, зависит от скорости приложения нагрузки и от температуры. Чем ниже скорость растяжения полипропилена, тем выше значение показателей механических свойств. При высоких скоростях растяжения предел прочности при растяжении полипропилена значительно ниже его предела текучести при растяжении. Показатели основных физико-механических свойств полипропилена приведены ниже  [c.30]

    Предел текучести полипропилена значительно выше, чем у всех существующих полиэтиленов, что дает возможность использовать этот материал для изготовления труб, причем химическая стойкость полипропилена сооб цает ему дополнительные преимущества. Сочетание высокой поверхностной твердости, эластичности низкого коэффициента трения делает полипропилен особенно пригодным для изготовления вра дающихся деталей пишущих машинок, счетных машин и радиоириемнпков. [c.164]

    Литье под давлением. Благодаря своей хорошей текучести полипропилен особенно пригоден для литья тюд давлением. Несмотря на то, что этот матерна.т имеет высокую температуру плав- ления, циклы производства мог т быть очень короткими, так как малая усадка полниропи.чеиа ( 3% в длину) позволяет извлекать детали из форм при относительно высоких температурах — около 100°. При использовании т111ательяо отполированных форм из полипропилена. можно получать изделия с более гладкими поверхностями, чех1 из других термопластов. [c.165]


Смотреть страницы где упоминается термин Полипропилен текучесть: [c.324]    [c.418]    [c.162]    [c.68]    [c.153]    [c.53]    [c.267]   
Основы химиии и технологии химических волокон Часть 2 (1965) -- [ c.266 ]

Основы химии и технологии производства химических волокон Том 2 (1964) -- [ c.266 ]




ПОИСК





Смотрите так же термины и статьи:

Полипропилен

Текучесть



© 2025 chem21.info Реклама на сайте