Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Окисление углерод-углерод кратным

    Первоначально термин окисление был введен в химию, как присоединение к элементам кислорода. Понять взаимосвязь приведенного в начале параграфа определения с исторически первым определением нетрудно, если вспомнить, что кислород — наиболее электроотрицательный элемент после фтора, и, следовательно, во всех соединениях кислорода, кроме РзО, электронная пара, образующая химическую связь кислорода с каким-либо другим атомом, оттянута в сторону кислорода. Таким образом, связанный с кислородом атом частично лишен своего электрона (в случае кратной связи — двух электронов) и поэтому может считаться окисленным. Число электронов, отданное атомом полностью (в случае образования иона) или частично (в случае образования связи с более электроотрицательным элементом), называют степенью окисления элемента. Чаще всего этим понятием пользуются применительно к соединениям кислорода и галогенов, хотя в принципе можно его распространить и на другие элементы и считать, например, водород в метане окисленным, а углерод — восстановленным, поскольку электроотрицательность углерода несколько выше, чем у водорода (соответственно 2,5 и 2,1). [c.252]


    В органической химии в соответствии с общим определением реакциями восстановления принято называть реакции, протекающие с уменьшением суммарной степени окисления атомов углерода или гетероатомов реакционного центра субстрата. Органические соединения восстанавливаются в процессах присоединения по кратным связям водорода, металлов, гидридов металлов и гидридов электроположительных металлоидов (бора, кремния, фосфора), замещения электроотрицательного гетероатома, гетероатомной или углеродной группировки на атом водорода или металла, элиминирования электроотрицательных атомов или гетероатомных групп, связанных с атомами реакционного центра через электроотрицательные атомы, и сочетания с предшествующим (или одновременным) разрывом связей между атомами углерода или гетероатомами и атомами более электроотрицательных элементов. Отдельные примеры таких реакций приведены ниже. [c.10]

    Так как большинство гетероатомов (например. О, 8, Вг) являются более электроотрицательными, чем углерод, любой гетероатом, связанный с атомом углерода, фактически понижает степень окисления последнего. Каждый атом водорода, будучи менее электроотрицательным, чем атом углерода, напротив, повышает степень окисления атома углерода, с которым он связан. Атом углерода, связанный с другим атомом углерода, никоим образом не влияет на степень окисления последнего. Вклад кратных связей подсчитывается согласно порядку связи (например, для С=0 вклад атома кислорода оценивается как +2). Напомним, что в конечном счете алгебраическая сумма окислительных чисел в молекуле равна нулю. [c.302]

    Согласно [45], при глубоком окислении олефинов различного строения на окиси меди атака кислорода направлена по С=С-связи. В работе [44] высказано предположение, что на первичном (наиболее трудном) этапе взаимодействия в олефиновых, а также в ацетиленовых углеводородах разрывается лишь одна из кратных связей углерод — углерод (л-С—С-связь). Это предположение подтверждается наличием соответствующей корреляции между относительной реакционной способностью и энергией указанной углеродной связи [44]. При глубоком окислении парафинов в стадии, определяющей скорость, разрывается, по-видимому, С—Н-связь. Ослабление этой связи по мере удлинения углеродной цепи (нормального строения) объясняет повышение реакционной способности парафинов, наблюдаемое при увеличении числа С-атомов в молекуле [43]. [c.192]

    Н. А. Прилежаев, открывший и исследовавший реакцию присоединения кислорода к непредельным соединениям при действии гидроперекисей кислот с образованием соответствующих окисей, установил, что скорость реакции возрастает по мере увеличения степени замещения атомов углерода, соединенных кратной связью [20]. Особенно быстро вступают в реакцию сполна замещенные этиленовые углеводороды, при окислении которых образование окисей заканчивается с окончанием приливания окислителя. При введении в одну из алкильных групп электроотрицательных заместителей, например группы ОН, взаимодействие протекает медленно так, реакция между гидроперекисью бензоила и аллиловым спиртом продолжается двое суток. [c.405]


    ОКИСЛЕНИЕ ПО УГЛЕРОД-УГЛЕРОДНОЙ КРАТНОЙ СВЯЗИ [c.163]

    Восстановленный свинец легко окисляется газообразным кислородом. Оксид свинца растворяется в борном ангидриде уже при 600 °С и реагирует с диоксидом кремния при темпера-ратуре сожжения с образованием ряда нелетучих силикатов. При добавлении к навеске анализируемого вещества 20-кратного количества этого реагента в сочетании с дробленым кварцем достигается полное окисление углерода во всех трудно- [c.63]

    Окисление СО в нестационарном режиме на нанесенном платиновом катализаторе изучалось также в работе [21]. На вход без-градиентного изотермического реактора подавали реакционную смесь, состав которой периодически изменялся — в течение первой половины периода подавали смесь оксида углерода с аргоном, в течение второй — смесь кислорода с аргоном. Процесс проводили при температуре 60°С, концентрации СО — О—2%, Оа — О—3%. Максимальная длительность цикла 3 мин. Оказалось, что при нестационарном способе ведения процесса может быть достигнуто 20-кратное увеличение скорости реакции по сравнению со стационарными условиями. Максимальный выигрыш имел место при длительности цикла 1 мин. Результаты экспериментов объясняются так. Предполагая, что образование СОа определяется главным образом скоростью взаимодействия адсорбированных СО и Оа, можно сделать вывод, что эта скорость максимальна в случае примерного равенства концентраций поверхностных форм [ OZ] и [0Z]. Тогда значительное увеличение наблюдаемой скорости образования СОа в нестационарном режиме можно объяснить тем, что в этом случае поверхностные покрытия сохраняли свои значения вблизи этих оптимальных величин. В то же время при стационарном способе ведения процесса степени покрытия [ OZ] и [0Z], как показывают независимые стационарные эксперименты, значительно отличаются по величине, и их произведение мало. [c.37]

    Для атомов углерода, входящих в состав кратных углерод-угле-родны связей, степень окисления определяют по продуктам гидратации  [c.7]

    При окислении первичных спиртов образующийся альдегид должен быть защищен от дальнейшего окисления в карбоновую кислоту. Можно, например, постоянно отгонять альдегид из реакционной смеси это вполне осуществимо, так как температура кипения альдегида обычно ниже, чем температура кипения соответ-ствующего спирта. Все же выход альдегидов при окислении бихроматом редко превышает 60%. Примечательно, что при надлежащем проведении реакции кратные углерод-углеродные связи почти не затрагиваются. [c.20]

    Окисление вторичных спиртов до кетонов осуществляется еще легче, чем окисление первичных спиртов. Выходы здесь выше, так как, во-первых, реакционная способность вторичных спиртов выше, чем первичных, а во-вторых, образующиеся кетоны гораздо устойчивее к окислению по сравнению с альдегидами. В ряду стероидов и терпенов хорошо зарекомендовало себя окисление вторичных спиртов комплексом хромовой кислоты с пиридином, а также хромовым ангидридом в диметилформамиде. Хорошим окислителем является также хромовый ангидрид в ацетоне с его помощью можно окислять ненасыщенные вторичные спирты, не затрагивая кратную углерод-углеродную связь. [c.20]

    Окисление кратных углерод-углеродных связей [c.32]

    Эти работы открыли новые синтетические перспективы использования HOF в качестве прекрасного агента для транспорта кислорода. Уже показаны его возможности для осуществления эпоксидирования кратной связи [9], гидроксилирования неактивной С-Н-связи у третичного атома углерода и окисления ароматических соединений [158], фторсодержащих олефинов [169], сульфидов [170], для превращения ароматических и алифатических аминов [171] и вторичных спиртов [172], а также простых метиловых эфиров [173] - в соответствующие нитропроизводные и кетоны. [c.204]

    Окисление в органической химии — процесс удаления водорода с образованием кратной связи или новой связи между атомом углерода и гетероатомом, более электроотрицательным, чем водород, например атомами кислорода, азота, серы и т. д. [c.213]

    Положение двойной связи в молекуле олеиновой кислоты может быть установлено на основании изучения веществ, образующихся в результате ее окисления. Напомним, что действие окислителя на непредельное соединение направлено на то место молекулы, где имеется кратная связь. В результате окисления олеиновой кислоты образуется одноосновная кислота строения СНд (С] ), СООН и двухосновная кислота строения НООС (СН,)э СООН. Это значит, что двойной связью в молекуле олеиновой кислоты соединены девятый и десятый атомы углерода (если вести счет от метильной групп). Стало быть, строение олеиновой кислоты должно быть выражено формулой  [c.123]

    При более энергичном действии окислителей на этиленовые углеводороды цепь атомов углерода разрывается по месту двойной связи и получаются, в зависимости от строения исходного углеводорода, или органические кислоты, или кетоны. Так, например, триметилэтилен (СНз) гС = СН—СНз расщепляется с образованием ацетона и уксусной кислоты углеводород строения R—СН = СН—R дает две кислоты R—СООН и R —СООН. Ввиду этого реакции окисления очень часто применяются для определения строения ненасыщенных соединений. Окисление перманганатом в нейтральной или щелочной среде применяется как качественная реакция на,кратные связи (раствор перманганата моментально обесцвечивается с выделением бурой перекиси марганца). Этиленовые углеводороды гладко окисляются тетраацетатом свинца и осмиевым ангидридом при этом двойная связь разрывается и образуются гликоли с тем же числом атомов углерода. Окисление в жидкой фазе кислородом или воздухом, вопреки прежним представлениям, направляется не на атомы углерода, связанные двойной связью, а на атом углерода, соседний с двойной связью при этом первичными продуктами окисления оказываются непредельные перекисные соединения  [c.372]


    Ненасыщенные кислоты образуют все обычные производные кислот — соли, ангидриды, галогенангидриды, амиды, сложные эфиры и др. С другой стороны, за счет кратной связи они вступают в реакции присоединения, окисления, полимеризации. Вследствие взаимного влияния карбоксила и кратной связи присоединение, например, галогеноводородов к а-, 3-непредельным кислотам происходит не по правилу Марковникова, т. е. водород направляется к наименее гидрогенизированному углероду  [c.193]

    Окислительное расщепление ненасыщенных кислот идет по атомам углерода, связанным кратной связью. Однозначные результаты получают при использовании минимальных количеств кислоты. Широко применяются только два метода окисление по Рудлофу и ОЗОНОЛИЗ. Полное окисление полиеновой кислоты не всегда приводит к однозначному установлению структуры даже при идентификации всех продуктов окмсления. Эти трудности можно обычно обойти, применяя ступенчатое окисление (см. разд. 25.1.3.5 и 25.1.6.4). Окислительное расщепление применяется в качестве препаративного метода в лабораториях, а также в промышленности. [c.53]

    Для установления строения непредельных соединений большое значение имело правило Попова — Кекуле, гласящее, что при окислении непредельных соединений расщепление молекул происходит по месту кратной связи. В 1871 г. А. Н. Попов впервые высказал идею, что непредельные углеводороды СпПгп при окислении хромовой смесью распадаются по месту двойной связи. Эта идея была экспериментально подтверждена А. Н. Поповым и А. Кекуле. В 1875 г. А. М. Зайцев сформулировал правило (правило Зайцева) При условпях соседства с паем (атомом) углерода, связанным с иодом, нескольких различно гидрогенизи-роваиных углеродов будет наиболее способен терять свой водород наименее гидрогепизироваппып  [c.205]

    При определении битумов используются методы сжигания серы в токе сухого очищенного кислорода при 700—800° С. Образовавшуюся СОа отделяют от SO2 и определяют кулонометрически (возможно определение 2 10" % углерода при навеске серы 1 г) [766] или методом потенциометрического титрования с чувствительностью 1-10 % из навески 1 г [7]. В работе [767] обращено особое внимание на тщательность отделения бОа- Для этого на-веску серы перед сжиганием смешивают с 10-кратным количеством РЬОз для "связывания большей части образующегосяТЗОа. Затем продукты сгорания пропускают в сосуды для окисления SO2 до SO3 при температуре —50° С. В этих условиях загрязне я СО парами серной кислоты не наблюдается, [c.216]

    Кетоны в нейтральной среде устойчивы к окислению, например не реагируют с перманганатом калия. Однако в кислой и щелочной средах кетоны окисляются с расщеплением углеродного скелета по двойной углерод-углеродной связи енольной формы (как и алкены по кратной связи см. разд. 1.2.3.1). При этом в соответствии с возможными направлениями енолизации из несимметричных кетонов образуются четыре различные продукта окисления-четыре карбоновые кислоты (К = = И) или четырехкомпонентная смесь кислот и кетонов, а из несимметричных-две карбоновые кислоты (К = = Н К = или одна кислота и один кетон  [c.260]

    В. К ядам с кратными связями относятся окись углерода и производные циаиа, олефины и ароматические соединения. Они действуют посредством конкурентной адсорбции, как уже было описано раньше в этом разделе, и подвергаются детоксикации восстановлением или окислением [45]. [c.266]

    После такого предварительного изучения из окисленного гексадекана хроматографически выделяли продукты окисления. Выделение осуществляли в стеклянных колонках диаметром 10 мм-и длиной I м на силикагеле марки АСК. Цетан разбавляли в 20-кратном объеме петролейного эфира (до 50°С) и пропускали через силикагель. Неадсорбируемую часть окисленной смеси гексадекана отмывали петролейным эфиром до тех пор, пока коэффициент рефракции стекающего петролейного эфира не становился равным исходному. Предварительными опытами было выбрано такое оптимальное соотношение между количествами силикагеля и окисленных продуктов, которое обеспечивало достаточно полное отделение продуктов окисления. Продукты окисления исчерпывающе десорбировали смесью этилового эфира и четыреххлористого углерода в объемном соотношении 1 1. Петролейный эфир и смесь этилового эфира с четыреххлористым углеродом отгоняли в токе химически чистого азота и сушили под небольшим вакуумом. Количественно выделенные таким путем продукты окисления и неадсорбируемую в данных условиях часть окисленной смеси подвергли физико-химическому и оптическому анализам. [c.62]

    Цетан с добавкой сернистых соединений помещали в герметически закрытый стеклянный сосуд и нагревали при 150° в специальном аппарате 11] при постоянном перемешивании в течение 2, 4, 6, 8 и 12 я. Соотношение жидкой и паровой фаз было 1 13,5. Окислителем служил кислород воздуха. После соответствующего нагрева в смеси определяли нерастворимый осадок в жг/400 мл [1], оптическую плотность на электрофотоколориметре ФЭК-М (эталоном служил исходный цетан, толщина слоя 3,045 мм, фильтр —синий), кислотность — потенциометрически в мг КОН/ЮОжл, перекиси в мг Ог/1 мл, а также спектры поглощения в инфракрасных и ультрафиолетовых областях. После этого из смеси хроматографически выделяли продукты окисления в стеклянных колонках диаметром 10 мм и длиной 1 мм на силикагеле марки АСК. Цетан разбавляли 20-кратным объемом петролейного эфира (КК-50°) и пропускали через силикагель. Неадсорбируемую часть окисленной смеси отмывали петролейным эфиром до тех пор, пока коэффициент рефракции последних порций фильтрата не становился равным исходному. Предварительными опытами было найдено соотношение между силикагелем и окисленными продуктами, обеспечивающее достаточно полное их отделение. Продукты окисления полностью десорбировали смесью этилового эфира и четыреххлористого углерода в объемном соотношении 1 1, которые отгоняли Ь токе чистого азота и сушили под небольшим вакуумом. Выделенные продукты окисления и неадсорбированную часть смеси подвергли анализу. Все исследования проводили на фоне чистого цетана. [c.449]

    Изучено окисление дифенилцинка кислородом прп комнатной температуре в циклогексане, хлороформе те четыреххлористом углероде при 30-кратном молярном разбавлении [137]. Во всех этих опытах окисление дифенилцинка ио превышало 60—70%. Выделено из смеси продуктов превращения при проведении реакгщи в циклогексане дифенила —44, фенола — 20 и бензола — 28 мол.%, а в хлороформе дифенила —51, фенола — [c.72]

    Термины окисление и восстановление не имеют в органической химии того точного значения, которое им присуще в неорганической химии. Тем не менее можно придать этим терминам определенное, более у.зкое значение. Реакции, создающие новые связи с водородом, почти всегда называются реакциями восстановления. Удаление водорода с образованием кратной связи или ново11 связи между углеродом и отрицательным элементом, таким, как кислород, азот, сера и галогены, обычно называется окислением. Принято говорить, что первичные спирты окисляются в карбоновые кислоты, а кислоты восстанавливаются в спирты. [c.426]

    Часто окисление не останавливается на образовании гликоля и проходит дзльше получаются альдегиды, кетоны и главным образом кислоты, причем молекула исходного соединения расщепляется по месту кратной связи. Двуокись марганца каталитически ускоряет окисление органических соединений в описанных условиях, поэтому окисление щелочным раствором, КМп04 веществ, содержащих двойные или тройные связи между атомами углерода, сначала идет медленно, а затем, с накоплением МпО , с бычно протекает быстро. Некоторые соединения, не содержащие кратных связей (например, муравьиная, щавелевая, лимонная кислоты, альдегиды, фенолы, многче кетоны, глицерин и т. ПГ), также быстро окисляются этим реактивом. Однако большинсгво насыщенных соедииений, в том числе предельные углеводороды, не реагируют [c.80]

    Окислительное дегидрирование олефинов в простейшем случае сводится к окислению части водорода молекулы с сохранением в неизменном виде числа атомов углерода без вхождения кислорода в молекулу. Для этилена простейший процесс такого типа представлял бы образование ацетилена. Этот процесс так же, как и образование этилена из этана, очень соблазнителен, но, к сожалению, дока его не удалось осуществить каталитически со сколько-нибудь удовлетворительными вьхходами. Это же справедливо и для образования метилацетилена СНд—С=СН и простейшего диена СНа=С=СН2 с соседними кратными связями. Начиная с к-бути-лена, становится рвальным получение дййнбв с двумя сопряженными" [c.274]

    Тема настоящей главы ограничена реакциями гидроборирования и окисления, сочетание которых рассматривается как специфический метод гидратации кратных углерод-углеродных связей в мягких условиях. Следует отметить, однако, что в присутствии карбоновых кислот органобораны претерпевают протонолиз, что может быть использовано в качестве способа гидрогенизации кратных углерод-углеродных связей в отсутствие катализаторов [7]. Органобораны претерпевают также реакцию конденсации при обработке щелочным раствором нитрата серебра, и эта реакция является новым путем создания углерод-углеродной связи [8]. [c.9]

    Качественные скачки при движении от элемента к элементу вдоль 3-го периода более ощутимы, чем во 2-м периоде, в котором от металла бериллия до элемента неметалла А-подгруппы — азота помещено два элемента (В и С). В 3-м же периоде между металлом алюминием и членом УА-подгруппы неметаллом — фосфором стоит всего лишь кремний. Этот элемент электро нньп т аналог углерода, но радиус 51 вдвое больше, а по потенциалу ионизации он близок не к углероду и не к соседям по периоду, а к бору. Проявляется диагональное сходство, но ядро кремния от внешних электронов экранировано сильнее, чем у бора, поэтому 51 легче переходит в высокое состояние окисления +4 или —4. Однако по отношению к атомам и группам с большим зарядом ядра и малым объемом координационное число кремния равно шести. Для кремния, как и других членов 3-го периода, правило октета строго не выполняется и довольно часто нарушается. Использование р-орбиталей при образовании кратных я-связей в 3-м периоде менее важно, чем для их аналогов из 2-го периода. К созданию таких связей они могут привлекать -орбитали, только в таком случае число электронных пар на внешнем уровне может быть более четырех. Кремний, как и последующие элементы 3-го периода, в соединениях имеет я-связи за счет участия свободных З -орбиталей. Поэтому, несмотря на большой размер атома кремния, связи его с кислородом, фтором или хлором прочнее, чем у углерода в СО, СР, СС1. Наоборот, связи 51—51 и 51—Н менее прочные, чем С—С или С—Н. У атомов кремния и фосфора 5- и р-орбитали тратятся на образование 0-связей, максимальное возможное число их —четыре. Для перекрывания и образования я-связей привлекаются некоторые из -орбиталей. Особенно подходят для этих целей и Чтобы иметь 5 орбиталей для связей, использу- [c.243]


Смотреть страницы где упоминается термин Окисление углерод-углерод кратным: [c.45]    [c.427]    [c.55]    [c.116]    [c.427]    [c.102]    [c.67]    [c.174]    [c.135]    [c.9]    [c.583]    [c.77]    [c.264]    [c.135]    [c.82]   
Курс теоретических основ органической химии (1959) -- [ c.0 ]




ПОИСК





Смотрите так же термины и статьи:

Кратные свя



© 2024 chem21.info Реклама на сайте