Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Висмут определение солей

    В настоящее время аналитическая химия стремится найти такие методы определения висмута, которые не требовали бы трудоемких процессов разделения, связанных, кроме того, с опасностью потери части висмута. В отдельных случаях это удалось можно, например, указать иа метод потенциометрического титрования висмута раствором соли двухвалентного хрома в присутствии трудноотделимого свинца, а также кадмия. Однако методы отделения продолжают играть исключительную роль в аналитической химии висмута. [c.10]


    Рекомендуемый метод применен для определения примеси висмута в металлическом свинце. При этом навеску свинца растворяли в разбавленной 1 4 азотной кислоте, избыток кислоты выпаривали и разбавляли остаток водой с таким расчетом, чтобы получить 1—1,2-м, раствор нитрата свинца. Далее поступали так же, как и при определении висмута в солях свинца. [c.193]

    Переход окраски не резок, так как образующийся основной нитрат висмута реагирует дальше с едкой щелочью с образованием гидроокиси. При определении соли висмута в 0,05 М и более концентрированных растворах получены хорошие результаты. [c.226]

    Амальгамы цинка, кадмия, олова и свинца переводят ванадий в соли а амальгама висмута—в соли VO . Применение двух различных амальгам, напри.мер цинковой и висмутовой, позволяет производить раздельные определения V и Fe, V и Ti, V и Сг и др. [c.464]

    Этим методом могут быть оттитрованы марганец, ртуть, свинец, висмут. Ниже в качестве примера обратного титрования дано определение солей марганца. [c.70]

    С другой стороны, на электродах из металлов платиновой группы процессы частичного или даже полного разряда ионов при их адсорбции нельзя не учитывать. Перенос заряда доказывают данные по кинетике адсорбции и обмена ионов. Так, например, адсорбционное равновесие в растворах неорганических солей на платиновом электроде устанавливается за время от нескольких минут до многих часов, тогда как в тех же растворах на ртутном электроде время формирования двойного слоя обычно не превышает миллионных долей секунды. Трудности, связанные с определением и трактовкой частичного переноса заряда при специфической адсорбции ионов, являются одной из причин того, что модельная картина строения двойного слоя на платиновых металлах разработана в значительно меньшей степени, чем на электродах типа ртути, свинца и висмута. [c.166]

    Методика определения. Навеску свинца (1 г при содержании 0,005—0,05% висмута и 10 г при содержании 0,0005—0,005% висмута) растворяют в азотной кислоте (1 4) при подогревании. Избыток кислоты выпаривают, остаток растворяют в небольшом количестве дистиллированной воды и нейтрализуют 2 п. раствором карбоната натрия до появления мути, вызываемой образованием основных солей, после чего прибавляют еще 4—5 мл 2 и. раствора карбоната натрия и кипятят 1 — [c.377]

    В качестве примера обратного комплексонометрического титрования можно привести определение хрома(III). Титрование избытка комплексона можно проводить даже в кислой среде, применяя в качестве титрантов растворы солей железа(III), висмута или тория. [c.285]


    Приведем некоторые примеры. Определение малых количеств висмута в металлической меди имеет очень большое значение, так как висмут ухудшает свойства меди, применяемой в качестве проводника электрического тока. После переведения навески металлической меди в раствор висмут можно осадить либо совместно с небольшим количеством меди, либо в качестве другого коллектора применить раствор соли алюминия. [c.528]

    Рассмотрим возможный ход анализа при выборе меди в качестве коллектора. Соли висмута подвергаются гидролизу значительно лучше солей меди, поэтому при некотором значении pH висмут полностью переходит в осадок вместе с небольшим количеством гидроксида меди. Осадок легко растворяется в кислоте. Однако ионы меди мешают дальнейшему определению ионов висмута в этом растворе. Тем не менее при добавлении тиомочевины ионы меди связываются в бесцветный прочный комплекс, а ионы висмута образуют комплекс желтого цвета. При действии иодида калия тиомочевинный комплекс меди не раз- [c.528]

    Можно применить в качестве коллектора и соль алюминия. Прн действии водного раствора аммиака ионы меди переходят в легко растворимый аммиачный комплекс синего цвета, а алюминий совместно со следами висмута осаждается в виде гидроксидов, что отвечает первому требованию. Ионы алюминия не мешают определению ионов висмута ни с помощью тиомочевины, ни с помощью иодида (выполняется второе требование к коллекторам). Однако вместе с гидроксидами алюминия и висмута соосаждается небольшое количество меди, которую легко связать в тиомочевинный комплекс. Как и в первом случае, гидроксиды алюминия и висмута легко перевести в раствор действием кислоты (выполняется третье требование к коллекторам). [c.529]

    Цитраты и тартраты мешают. Относительная ошибка метода в зависимости от содержания алюминия колеблется в пределах от 5 до 15%. Флуориметрический оксихинолиновый метод использован для определения алюминия в сталях и бронзах [767], в магнии [451], в уране [451], в солях висмута [451], в фосфатных породах [779], в растительных материалах [1125], в воде [ 016], в вольфраме и окиси вольфрама [672]. [c.136]

    Электрогравиметрические определения иногда можно выполнять и в коротко замкнутом гальваническом элементе без внешнего источника напряжения. При этом на одном электроде протекает реакция окисления, а на другом - восстановления. Например, ионы Си(П) количественно выделяются из раствора на платиновом катоде, если его соединить с цинковым анодом, погруженным в раствор соли цинка. Подобным образом можно выделить также сурьму, кобальт, висмут. Этот метод носит название внутреннего электролиза или самопроизвольного электролиза. Последнее название более подходящее, хотя и используется гораздо реже, чем первое. [c.548]

    Разработаны фотометрические методы определения калня, основанные на предварительном осаждении растворами соли висмута и тиосульфата [370, 2210], натриевой солью 2-хлор-З-нитротолуол-5-сульфокислоты [2896], 5-нитробарбитуровой кислоты [2180] и реакцией с лимонной кислотой в уксусном ангидриде [1019] [c.102]

    Реакция обратима. Для полного восстановления У (У) доУ(1У) необходимо поддерживать высокую концентрацию НС1. В водных растворах солей, подкисленных серной кислотой, ванадий легко восстанавливается амальгамой висмута до У(1У), магнием — до У(1И) и цинковой амальгамой— до У(И). Некоторые приемы восстановления, сопровождаемые последующим окислением восстановленных растворов ванадия титрованным раствором КМпО , были предложены для количественного определения У. [c.9]

    Соли кадмия, алюминия, хрома, кобальта, никеля, цинка, марганца, магния, щелочноземельных и щелочных металлов не мещают определению таллия в нейтральных или слабокислых растворах. При осаждении из аммиачных растворов должны отсутствовать катионы, образующие малорастворимые гидроокиси. Присутствие солей свинца, ртути, серебра, висмута и других катионов, осаждаемых иодидом калия, мещает определению таллия добавление комплексонов повы-щает селективность метода [745]. [c.89]

    Ошибка определения обычно не превышает 2—3%. Цинк, железо, медь, висмут не мешают титрованию мешают ртуть, серебро, кадмий, а также бромиды. Описанный метод дает хорошие результаты в разбавленных растворах солей трехвалентного таллия при больших концентрациях указанный ход реакции усложняется выпадением осадка иодида таллия и нерезким изменением окраски индикатора. [c.100]

    Свойства. Красно-коричневый порошок с металлическим блеском. Применяют для определения прямым титрованием тория (IV), меди, железа (III), галлия (III), индия (III), никеля, кобальта, марганца, цинка, магния, кадмия. Методом обратного титрования солью висмута определяют железо (III), висмут, индий (III), галлий (III) и торий (IV). Обратным титрованием солью меди определяют железо (III), алюминий, титан (IV) и индий (III). Каждый элемент определяют в своих особых условиях. [c.277]


    Алкалоиды дают простые и комплексные соединения с различными реагентами, чаще всего кислотами. Некоторые из этих соединений могут быть использованы для качественного определения алкалоидов, если они образуют нерастворимые осадки или дают окрашенные вещества. К числу таких общих реактивов на алкалоиды относится таннин, фосфорно-молибденовая, фосфорно-вольфрамовая, кремне-воль-фрамовая, пикриновая и хлорная кислоты, раствор иода в иодистом калии, двойные соли иодистого калия с иодистой ртутью, с иодистым висмутом, сулемой, хлористой медью н др. [c.121]

    А. И. Бусев [42, 43] систематически исследовал реакцию менаду трехвалептным висмутом и солями двухвалентного хрома и разработал простой и быстрый нотенциометрический метод определения висмута в чистых растворах и в растворах, содержащих свинец и кадмий. Реакция протекает строго стехиометрически ио уравнению [c.261]

    Бокрис Дж. и Герингшоу Дж. Стандартные электродные потенциалы элементов. [Пер. с англ.]. Успехи химии, 1951, 20, вып. 2, с. 246—252. Библ. с. 251—252. 754 Бусев А. И. О реакции восстановления трехвалентного висмута растворами солей двухвалентного хрома. ДАН СССР, 1950, 74,. № 1, с. 55—56. Библ. 6 назв. 755 Бусев А. И. Потенциометрическое определение висмута раствором соли двухвалентного хрома. ЖАХ, 1951, 6, вып. 3, с. 178— [c.35]

    Поедложенный метод может быть применен для определения висмута в солях, металлах и сплавах. Дихлорэтановый раствор три-н-дециламина применен для экстракционно-комп-лексонометрического определения цинка в цинксодержаших ферритах [39]. Метод позволяет провести определение цинка в феррите за 20 минут. [c.262]

    I. Микрокристаллоскопическое исследование и определение цвета. Мелко измельченную пробу твердого веп1ества распределяют тонким слоем на предметном стекле так, чтобы можно было под микроскопом установить различие или обш,ность форм отдельных мельчайших частичек и их цвет, по которому можно приближенно установить состав соединения. Так, в черный цвет окрапдены, например, сульфиды железа, никеля, кобальта, меди (II), ртути, серебра, свинца, висмута и оксиды меди и никеля в коричневый цвет — оксид кадмия и диоксиды свинца и марганца в зеленый — оксиды и соли хрома (III), соли железа (И), карбонат гидроксомеди, некоторые соли никеля в желтый — оксид ртути (II) и свинца (И), сульфиды кадмия, олова (IV), мышьяка (ИГ) и (V), мно- [c.329]

    Галогениды висмута В1Гз - типичные соли. Темно-коричневый ВПз мало растворим в воде. С избытком К1 образуют ярко-желтый растворимый комплекс К(В114 . Это соединение используют для аналитического определения В (его окраска настолько интенсивна, что позволяет измерять концентрации В порядка 10 г/мл). [c.425]

    Метод основан иа титровании индия (111) при pH 1,0 раствором динатриевой соли этилендиаминтетрауксусной кислоты (комплексон III). Точку эквивалентности устанавливают по исчезновению диффузионного тока восстановления 1п Ч-иона на ртутном капельном электроде при потенциале от —0,7 до —0,8 в относительно насыщенного каломельного электрода. Определению не мешают многие элементы, с которыми обычно приходится встречаться при анализе индийсодержащих продуктов, а именно 2п, Мп, Сс1, Со, А1. Титрованию не мешают также значительные количества Ре++ ( 10 мг). Железо (111) восстанавливают до Ре++. Влияние олова (-<5 мг) и сурьмы (-<2. мг) устраняют введе-ннем винной кислоты. Определение возможно в присутствии небольших количеств (-<0,5 мг) ионов медн, если их замаскировать тномочевиной, и ионов свинца, а также мышьяка (-<2 мг). Большие количества этих элементов затрудняют установление точки эквивалентности вследствие того, что медь, свинец и мышьяк дают диффузионный ток. Однако эти элементы легко отделяются от индия в ходе анализа мышьяк и свинец удаляются при разложении пробы смесью хлористоводородной и серной кислот и упаривании раствора до появления паров Н2504 медь — при осаждении гидроокиси нндия избытком аммиака. Определению мешает висмут. [c.369]

    Определение висмута в свинце основано на том, что свинец количественно осаждается в виде основной соли из разбавленного раствора нитрата свинца при pH 6, а висмут количественно осаждается из слабоазотнокислого раствора при pH 4,1 0,2. [c.377]

    Высокочастотные безэлектродные лампы. При определении таких элементов, как мышьяк, висмут, сурьма, селен, теллур, таллий, свинец, хорошие результаты были получены при использовании безэлектродных ламп с высокочастотным (ВЧ) возбуждением. Спектральные высокочастотные безэлектродные лампы представляют собой сферические (рис. 8.6, а, б) или цилиндрические (рис. 8.6, в, г) баллоны из стекла или кварца, нанолненные инертным -азом при низком давлении. В баллон, снабженный отростком, помещается небольшое количество чистого металла либо его соли. Имея более низкую температуру, чем остальной баллон, отросток стабилизирует раснределение температуры в ламие и устраняет перемещение металла по внутренней ее но-верхности, уменьшая релаксационные колебания интенсивности излучения. Копструкцин, изображенные на рис. 8.6, а, б, предназначены для применения в ВЧ-генераторах (20—200 МГц), а конструкции, представленные на рис. 8.6, в, г, — в СВЧ-геиераторах [c.146]

    Молибденомышьяковая кислота всегда образуется в а-форме, которая при рн 1 медленно переходит в р-форму. Все молибденовые ГПК могут быть получены в р-форме в водно-органических средах [8], чем обусловлено проведение реакции образования гетерополикислот фосфора, кремния в смешанных средах [9]. Этот метод [9], не уступая по простоте выполнения обычному методу фотометрического определения фосфора в водных растворах, несколько превосходит его по чувствительности. В последнее время для получения синих форм ГПК в качестве восстановителей используют преимущественно более мягкие восстановители [ 11] аскорбиновую кислоту, аскорбиновую кислоту 4-Н- антимонилтартрат и аскорбиновую кислоту с солью висмута, что предотвращает восстановление молибдена из молибдата аммония, который берут в избытке [10] применяют также соль Мора, хлорид олова [c.139]

    При обратном титровании избыток трилона Б, не вступивший в реакцию с определяемым металлом, оттитровывают при определенном значении рИ и соответствующем индикаторе точным раствором соли висмута (илн другого металла). В конце титрования окраска раствора и.чменяется от окраски свободного индикатора до окраски, свойственной его комплексу с катионом. [c.57]

    Количественное определение основано на определении процентного содержания висмута, находящегося в препарате. Д я этой цели около 10 г препарата вливают в предварительно точно взвешенную коническую колбу емкостью 100 мл и по охлаждении взвешивают. По добавлении 5 мл азотной кислоты нагревают в кипящей водяной бане до перехода красного цвета в желтый. По охлаждении масло повторно извлекают эфиром, эфирные вытяжки промывают водой и промывные воды присоединяют к водной вытяжке. По прибавлении воды и раствора аммиака соль висмута титруют 0,05 М раствором трилоиа Б в присутствии индикатора пирокатехинового фиале-тового до перехода синей окраски в желтую. [c.216]

    Предварительное концентрирование металла в объем ртутного микроэлектрода обычно проводят при потенциале предельного тока восстановления исследуемого иона. Этим путем можно получить амальгамы металлов I и II групп периодической системы, редкоземельных элементов, а также таллия, индия, галлия, цинка, кадмия, свинца, висмута, алюминия, меди, серебра и золота (рис. 11.1). Однако щелочные металлы имеют столь отрицательные потенциалы восстановления, что их концентрирование из водных растворов практически невозможно. Как правило, эти металлы определяют в органических средах, например, в диметилформамиде на фоне четвертичных аммониевых солей. То же в значительной степени относится и к щелочноземельным металлам. Кроме того, из-за близости потенциалов окисления металлов I и II групп нельзя ожидать высокой селективности при огфеделении данных ионов. Поэтому метод ИВА практически не применяется для определения щелочных и щелочноземельных металлов. [c.417]

    Определение натрия в висмуте и его солях [227]. Метод основан на концентрировании примесей осаждением основы в виде В11з. Спектры возбуждают в дуге переменного тока, сила тока 5 А, экспозиция 40 с, фотопластинки панхром. Предел обнаружения натрия [c.108]

    Значительно менее растворима соль диантипирилметана С2зН240гН4- Н[Т1Вг4], одна весовая часть которой соответствует 0,2238 весовым частям таллия. При определении 8— 45 мг таллия получаются вполне удовлетворительные результаты. Добавление комплексона III позволяет осаждать таллий нз растворов, содержащих висмут и железо добавление винной кислоты препятствует осаждению сурьмы. [c.93]

    Методы инверсионной вольтамперометрии находят широкое применение для определения Sb в различных материалах, в том числе в чугунах, железе и сталях [1348, 1575], меди и медных сплавах [87, 116, 526, 569, 1348, 1575,1585], олове[221, 222, 224, 225, 242, 318, 526], алюминии [131, 132, 731, 1503], галлии и его солях [243, 245, 293, 303], арсениде галлия [243, 245, 246, 303, 586], кадмии и его солях [302, 318, 737], германии, тетрахлориде и тетрабромиде германия [105, 134], кремнии, двуокиси кремния, тетрахлориде и тетрабромиде кремния и трихлорсиланах [105, 133, 271, 310, 1503], цинке и цинковых сплавах [67, 737], серебре [605, 731J, свинце [833], теллуре [116], мышьяке [303], хроме и его солях [940], барии [125], ртути [528], висмуте [1348], никеле и никелевых сплавах [590], припоях [1348], полиметаллических рудах и продуктах цветной металлургии [116], растворах гидрометаллургического производства [138, 319, 1545], шламах [1175], ниобии и тантале и их соединениях [223, 2901, химических реактивах и препаратах [105], криолите [245, 586], материалах, используемых в злектронной [c.68]

    Из известных в настоящее время комплексонов наибольщее применение для комплексонометрического титрования получила динатриевая соль этилендиаминтетрауксусной кислоты, встречающаяся в литературе под названиями трилон Б, комплексон И1, хелатон И1 и др. Трилон Б образует с катионами различных металлов в стехиометрическом отнощении (1 1) устойчивые и хорошо растворимые в воде комплексонаты и используется для количественного определения кальция, магния, цинка, висмута, свинца и алюминия в лекарственных препаратах. [c.186]


Смотреть страницы где упоминается термин Висмут определение солей: [c.10]    [c.134]    [c.122]    [c.258]    [c.286]    [c.351]    [c.431]    [c.200]    [c.16]    [c.131]    [c.200]    [c.112]    [c.99]    [c.69]    [c.56]    [c.373]   
Объёмный анализ Том 2 (1952) -- [ c.218 , c.226 , c.356 ]




ПОИСК





Смотрите так же термины и статьи:

Висмутил, соли

Раздельное определение кальция, стронция и бария в солях железа, меди и висмута с применением экстракции. Ф. П. Горбенко, Лапицкая



© 2025 chem21.info Реклама на сайте