Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Железо электродный потенциал

    Более высокое значение Е , чем для пары железо(П1)—железо (II), говорит о большей стабильности комплекса Ре , что было подтверждено экспериментально [14]. Опять-таки, при наличии достаточного количества комплексанта, необходимого для реакции с обеими формами железа, электродный потенциал не зависит от концентрации комплексанта. [c.254]

    Олово применяется главным образом для лужения железа. Электродный потенциал олова —0,14 в. [c.154]


    В нейтральной среде потенциал водородного электрода при соприкосновении с воздухом равен -0,228 В. С учетом перенапряжения выделения водорода на железе электродный потенциал возможного катодного процесса [c.61]

    Для второго из выбранных объектов, т. е. для железа, стандартный электродный потенциал равен —0,44 В. Поэтому здесь, так же как и в случае цинка, следует считаться с реакцией выделения водорода, и, следовательно, условия стационарности будут заданы уравнением (24.2). Однако в отличие от цинка здесь совершенно иное соотношение токов обмена металла и водорода. Ток обмена железа имеет порядок 10 з А-см- , а для водорода на железном электроде в кислых растворах он достигает А-см 2. Можно ожидать поэтому, что стационарный потенциал железа в условиях кислотной коррозии должен заметно отличаться от его обратимого потенциала он будет смещен в сторону положительных значений, г. е. в направлении равновесного потенциала водородного электрода. Этот вывод согласуется с экспериментальными данными и находит дополнительное подтверждение в том, что железо ведет себя в некоторых интервалах pH подобно водородному электроду. Скорость коррозии железа также можно вычислить, если только известны его стационарный потенциал и перенапряжение водорода на нем. [c.493]

Рис. 209. Изменение коэффициента пассивности П и степени анодного контроля Сд в зависимости от электродного потенциала при коррозии железа в нейтральных аэрированных растворах Рис. 209. <a href="/info/22940">Изменение коэффициента</a> пассивности П и <a href="/info/1639016">степени анодного</a> контроля Сд в зависимости от <a href="/info/2864">электродного потенциала</a> при <a href="/info/16254">коррозии железа</a> в нейтральных аэрированных растворах
    При переходе железа в раствор в виде ионов Ре " равновесие (659) восстанавливается медленно, вследствие чего устанавливается электродный потенциал более затрудненного процесса  [c.309]

    Олово обладает недостаточно высокой механической прочностью. Нормальный электродный потенциал олова Sn 5A Sn- ++ 2е равен — 0,136 в. Пассивируется олово слабо. Коррозионная стойкость олова в атмосферных условиях, в дистиллированной, пресной и соленой воде очень высока. Этим объясняется широкое применение олова для защиты от коррозии в воде и в атмосферных условиях железа, потенциал которого более отрицателен, чем у олова. Однако так называемая белая (луженая) жесть во влажной загрязненной атмосфере быстро разрушается вследствие пористости защитного оловянного слоя. [c.265]


    Основным легирующим элементом нержавеющих сталей является хром, который облагораживает электродный потенциал стали и повышает ее коррозионную стойкость. Повышение коррозионной стойкости при увеличении содержания хрома в стали происходит скачкообразно. Первый порог коррозионной устойчивости достигается при концентрации хрома, равной 12,8%, что соответствует 1/8 атомной доли хрома в соста,ве стали. Для обеспечения коррозионной стойкости стали это количество хрома должно находиться в твердом растворе железа и не образовывать карбидов. При увеличении его содержания до 18% или до 25—28% достигается второй порог и наблюдается дальнейшее повышение коррозионной стойкости стали. Однако увеличение содержания хрома приводит к понижению механических свойств стали, особенно ударной вязкости, а также затрудняет сварку, вызывая хрупкость сварного шва. Поэтому стали с высоким содержанием хрома после сварки требуют термической обработки. [c.40]

    Запишите схему гальванического элемента, с помощью которого можно определить стандартный электродный потенциал железа. Какие процессы будут протекать на электродах  [c.102]

    Задание. Подумайте о принципиальных отличиях зашиты железа лужением (покрытие оловом) и цинкованием. Что получается при повреждении защитной пленки Учтите, что олово имеет более положительный электродный потенциал, а цинк более отрицательный, чем железо. [c.337]

    В агрессивных растворах, в морской воде, в почве применяют электрохимический метод защиты. Одной из разновидностей этого метода является метод протекторной защиты, который применяют в нейтральных средах. К стальной конструк-дии 1 присоединяют пластины из чистого цинка 2 или сплава цинка с алюминием (рис. 92). При этом образуются макро-гальванические элементы, в которых цинк (или сплав цинка) выполняет функцию анода, а конструкция, которую защищают от коррозии, становится катодом. При этом цинковые пластины (протектор) растворяются, а коррозия конструкции (катода) вследствие сдвига электродного потенциала в более отрицательную область прекращается или сильно уменьшается. Другая разновидность электрохимического метода — катодная защита. Конструкцию 1 для защиты от коррозии присоединяют к отрицательному полюсу генератора постоянного тока, положительный полюс — к куску железа 2 (рис. 93). Это сдвигает потенциал защищаемой конструкции в область более отрицательных значений, что приводит к сильному торможению коррозии. [c.376]

    При какой концентрации ионов Ре электродный потенциал железа равен нулю ( °ре/реа+=—0,44 В). [c.262]

    Электродный потенциал железа [c.267]

    Электрохимическая (электролитная) коррозия предотвращается контактом разрушающегося от коррозии металла с металлом, имеющим более отрицательный электродный потенциал,, например железо в контакте с цинком или покрытое им (оцинкованное) не подвергается коррозии в связи с тем, что в образующемся гальваническом элементе растворяется цинк, а на железе выделяется водород. [c.378]

    Чистые металлы корродируют медленно (даже железо). Однако технические металлы, содержащие различные примеси, корродируют гораздо быстрее. Значит, наличие примесей в металлах — одна из причин ускорения коррозии. Поясним это на примере. Чистые цинк и железо в воде корродируют медленно, но если пластинки этих металлов привести в соприкосновение, коррозия цинка резко ускорится, железа — прекратится вообще. Объясняется это явление следующим образом. Как известно, вследствие частичной растворимости на поверхности металла, погруженного в воду, возникает отрицательный заряд, а контактирующий с поверхностью металла раствор заряжается положительно. Возникающий скачок потенциала между металлом и раствором (электродный потенциал) препятствует дальнейшему выходу катионов из кристаллической решетки металла в раствор, т. е. растворению металла. Этот скачок потенциала будет тем больше, чем левее в ряду напряжений расположен металл. Если в растворе присутствует кислород, то он будет выступать как окислитель, снимая с поверхности металла электроны, и процесс растворения металла, следовательно, будет продолжаться (см. уравнение реакции ржавления железа). Окислителем по отношению к металлу в растворе могут также выступать ионы водорода при растворении металлов в растворах кислот или воде. Но поскольку концентрация ионов водорода в чистой воде очень мала, то для вытеснения водорода из воды, т. е. ра- [c.261]

    По своим химическим свойствам соли хрома (2-f ), похожи на соли двухвалентного железа, но отличаются от последних более ярко выраженными восстановительными свойствами, т. е. легче, чем соответствующие соединения двухвалентного железа, окисляются (нормальный электродный потенциал системы Fe +/Fe + равен -fO,77B, сравните с потенциалом Сг +/Сг +). Именно поэтому очень трудно получать и хранить соединения двухвалентного хрома. [c.340]

    Нормальный электродный потенциал системы Ре/Ре + равен —0,44 (см. табл. 13), и ясно, что железо относится к числу активных металлов. Оно легко вступает во взаимодействие с соляной и разбавленной серной кислотами, вытесняя водород и образуя соли закиси железа  [c.352]


    Характер покрытия зависит от условий службы данного металлического изделия. Например, цинковое покрытие при обычных атмосферных условиях, как уже отмечено, по отношению к железу является анодным. При температуре же выше 70° указанное покрытие настолько изменяет свой электродный потенциал, что становится для железа уже катодным покрытием. [c.368]

    Химические свойства металлического железа в значительной мере определяются его положением в ряду напряжений. Отрицательная величина стандартного электродного потенциала (Fe2+ + 2e = Fe° Ео = = —0,44 В) указывает на термодинамическую неустойчивость металлического железа в условиях земной коры находясь в ряду напряжений левее водорода, железо должно вытеснить водород из воды, окисляясь при этом до одной из характерных для него низких, но положительных степеней окисления. [c.118]

    Константа нестойкости комплексного иона меди очень мала = 2,6-, соответственно очень мала и концентрация свободных ионов меди Си+. Электродный потенциал меди в цианистом растворе становится отрицательнее потенциала железа (Е < и(сы),Г /си < E e v ), и контактное вытеснение меди из раствора не происходит, поэтому в таком растворе можно проводить меднение стальных изделий. Кроме того, электроосаждение меди из комплексных ионов протекает с высокой поляризацией, что обеспечивает равномерное распределение металла по поверхности изделия сложной формы. первом приближении процесс у катода можно представить уравнениями  [c.426]

    Если же водный раствор содержит катионы различных металлов, то при электролизе выделение их на катоде протекает в порядке уменьшения алгебраической величины стандартного электродного потенциала соответствующего металла. Так, из смеси катионов Ag Си , Ре " сначала будут восстанавливаться катионы серебра ( 0 == -1-0,80В), затем катионы меди (Е = +0,34 В) и последними — катионы железа ( = —0,44 В). [c.96]

    Вычислите электродный потенциал железа ( ре/ре +) в 0,01 М растворе соли РеСЬ- [c.182]

    Процесс восстановления ионов железа, никеля и меди в данных условиях буде самопроизвольным процессом, если он сопровождается окислением цинка. Это требование эквивалентно тому, что электродный потенциал цинка должен быть более отрицательным по отношению ко всем остальным. Такое соотношение действительно имеет место. Следовательно, цинк может восстановить в данных условиях все перечисленные выше ионы. [c.212]

    Электролитическое покрытие стальных деталей никелем является я настоящее время распространенным методом для предохранения поверхностей от коррозии и получения внешне красивого вида. Надежная защита от коррозии достигается только в том случае, если никелирование производится с подслоем меди. Никелевые покрытия, являясь катодными по огношению к железу (электродный потенциал никеля более благородный, чем железа), не могут служить электрохимической защитой для железа и защищают его чисто механически при полном отсутствии пор в покрытии. Однако никелевые покрытия непосредственно на железе обычно получаются пористыми, а поэтому для уменьшения пористости покрытия предварительно и осаждают подслой меди. В меньшей степени никели1 ювание применяется длн повышения твердости. В этом случае осалсдение никеля производят непосредственно на стальную поверхность. Покрытие никелем, как было указано выше, применяется часто в качестве подслоя при электролитическом хромировании. [c.125]

    Вычислите электродный потенциал железа в 0,01 М растворе соли Ре (N03)2. Вычислите электродный потенциал серебра в 0,001 М растворе AgNOз. Вычислите э. д. с. гальванического элемента, состоящего из железного электрода, погруженного в 0,01 М раствор Ре (N03)2, и серебряного электрода, погруженного в [c.97]

    В связи с тем что ири температуре свыше 90° С электродный потенциал цинка облагораживается, а потенциал железа при этой температуре почти не изменяется, в гальваиической паре цинк — железо в горячей воде цинк меняет свою полярность и становится по отношению к железу катодом. [c.79]

    По механизму защиты различают металлические покрыти5( анодные и катодные. Металл анодных покрытий имеет электродный потенциал более отрицательный, чем потенциал защищаемого металла. В случае применения анодных покрытий ие обязательно, чтобы оно было сплошным. При действии растворов электролитов в возникающем коррозионном элементе осноиной металл — покрытие основной металл является катодом и поэтому при достаточно большой площади покрытия не разрушается, а защищается электрохимически за счет растворения металла покрытия. Примерами анодных покрытий являются покрытия железа цинком и кадмием. Анодные покрытия на железе, как правило, обладают сравнительно низкой коррозионной стойко- [c.318]

    Катодные металлические покрытия, электродный потенциал которых более электроположителен, чем потенциал основного металла, могут служить надежной защитой от коррозии только при условии отсутствия в них пор, трещин и других дефектов, т. е. при условии их сплощности, так как они механически препятствуют проникновению агрессивной среды к основному металлу. Примерами катодных защитных покрытий являются покрытия железа медью, никелем, хромом и другими более электроположительными металлами. [c.319]

    Применяемые для изготовления топливного оборудования металлы (сталь, бронза и др.) всегда электрохимически гетерогенны, имеют неоднородную поверхность из-за разнородности химического (микровкпючения примесных металлов, оксиды) и фазового состава, наличия внутренних напряжений в металла. Жвдкая фаза также неоднородна по составу и концентрации растворенных веществ, по температуре и пр. Неоднородные участки всегда различаются по величине электродного потенциала, а, следовательно, по активности поверхностных катионов. Так, например, на поверхности стали с микропримесью меди с большей интенсивностью протекает гидратация ионов железа ( Ес > Ере ) Схема и состав элементарного объема системы, в которой может протекать электрохимическая коррозия, приведены ниже  [c.55]

    Никель является электроотрицательным металлом (стандартный электродный потенциал .2 1 . = — 0,2Б В), но благодаря склонности к пассивированию приобретает более положительный потенциал и достаточную стойкость против действия атмосферы, щелочей и некоторых кислот. В гальванической паре с железом никель является катодом и, следовательно, надежно заи1ищаст основной металл (сталь) от коррозии только при отсутствии оголенных участков и пор в покрытии. [c.38]

    Централыгьгй ион также меняет свои свойства в результате комплексообразования, что можно видеть, например, по изменению соответствующего электродного потенциала. Так, стандартный электродный потенциал системы Fe +IFe " " в водном растворе равен +0,771 В. Если же взять цианидные комплексы, содержащие железо в степени окисления +2 и -1-3, то для системы [Fe( N)e] -l[Fe( N)6] - = -1-0,36 В, из чего следует, что эта система обладает более слабыми окислительными свойствами, чем система Ре Fe " ". В данном, наиболее типичном случае переход от гидратированных ионов к более устойчивым комплексам сопровождается преимущественной стабилизацией комплексного иона, содержащего центральный атом в высшей степени окисления, вследствие чего окислительная способность этого иона ослабляется. [c.377]

    Вычислите электродный потенциал железа в 0,01 М растворе Ре(НОз)2 и серебра в 0,001 М растворе AgNOз. Вычислите э. д. с. гальванического элемента, состоящего из железного [c.261]

    На поверхности твердых веществ, имеющей гидрофильные функциональные группы, адсорбируются только ионы железа (III), обладающие большей плотностью заряда и образующие даже в кислых растворах гидроксокомплексы типа [Ре(0Н)2(Н20)4]+. При низких концентрациях, когда доля поверхности 0 твердых веществ, заполненной гидроксокомплек-сами, невелика, адсорбция ионов происходит по координационному механизму в пленку адсорбированной воды, а не по механизму ионного обмена. Ионы железа (III) не достигают поверхности. т. е. не проходят двойного электрического слоя, что позволяет при выводе уравнения адсорбции пе рассматривать кулоновскую составляющую энергии адсорбции. Условием постоянства электродного потенциала при любом содержании твердого вещества в суспензии является равенство химических потенциалов ионов в растворе и на поверхности твердого вещества-адсорбента, т. е. рр= 1т- Вводя активности ионов, получаем [c.205]

    Покрытия металлами N1, Сг, Ag, Аи являются защитно-декоративными. Характер покрытия зависит от условий службы тЪго или иного металла. Так, например, цинковое покрытие при обычных атмвсферных условиях, как указано выше, по отношению к железу является анодом, но при температуре выше 70° С это покрытие настолько изменяет свой электродный потенциал, что становится уже для железа катодным покрытием. [c.195]

    Следует также помнить, что стандартный электродный потенциал характеризует окислительно-восстановп-тельные свойства металлов и их ионов при стандартных условиях, без учета многих факторов, влияющих на протекание химической реакции. Например, магний не будет вытеснять цинк из раствора его соли, хотя его электродный потенциал на 1,61 В отрицательнее цинка. Щелочные металлы не будут восстанавливать ионы железа и даже меди или серебра из растворов их солей, так как в этих случаях с большей скоростью будет протекать реакция окисления металлов ионами Н+-из воды. Именно поэтому электродные потенциалы этих металлов определяются косвенным путем. [c.208]

    Разница в величинах стандартных электродных потенциалов различных металлов или соединений, содержащихся в сплавах, является одной нз причин коррозии. Влага, присутствующая на поверхности металла, в атмосферных условиях растворяет в себе СОг, SO2, СЬ, H2S, Na l и т. д. Таким образом, возникают растворы, и металл покрывается пленкой электролита. Это создает возможность образования микроскспических гальванических элементов, электродами которых являются различные неоднородные участки поверхности. Например, если на поверхности железа есть включения меди, то возникает элемент Fe — электролит — Си, который коротко замкнут поверхностью металла. Так как железо имеет более отрицательный электродный потенциал, чем медь, то оно будет растворяться, т. е. будет идти коррозионное разрушение поверхности. [c.111]


Смотреть страницы где упоминается термин Железо электродный потенциал: [c.197]    [c.198]    [c.208]    [c.301]    [c.55]    [c.55]    [c.146]    [c.137]    [c.267]    [c.262]    [c.229]    [c.423]   
Учебник общей химии 1963 (0) -- [ c.150 ]

Основы общей химии Т 1 (1965) -- [ c.209 ]

Основы общей химии том №1 (1965) -- [ c.209 ]




ПОИСК





Смотрите так же термины и статьи:

Потенциал электродный потенциал

Электродный потенциал



© 2024 chem21.info Реклама на сайте