Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Кальция растворимость в ртути

    Растворимость кальция в ртути незначительна. Концентрация кальция в амальгаме при 18 °С составляет 0,188 вес. %, или 0,934 атомн. %. Плотность такой амальгамы 13,358 г/с.и , вязкость 1,721 спз. [c.166]

    Реакции мешает присутствие аммонийных и щелочных солей некоторых органических кислот (уксусной, лимонной и др.), а также катионов, образующих труднорастворимые сульфаты (бария, кальция, стронция, ртути). Эта реакция в химическом анализе применяется для отделения свинца от железа, меди, цинка и других элементов, сульфаты которых хорошо растворимы в воде. [c.27]


    Все сульфаты растворимы в воде за исключением сульфатов бария, стронция, свинца, кальция и отчасти серебра и комплексной ртути. [c.580]

    Соли фтороводородной кислоты — фториды. Большинство из них труднорастворимы в воде, хорошо растворимы фториды натрия, калия, алюминия, олова, ртути, серебра. Все фториды ядовиты. Фторид кальция СаР широко применяют для получения фтороводородной кислоты, а также в металлургии. [c.172]

    В качестве коллекторов используют гидроксиды железа, алюминия и некоторых других катионов сульфиды кадмия, ртути и др. карбонат кальция, гидрокарбонат железа и др. сульфаты бария, кальция и др. малорастворимые органические соединения а- и -нафтолы, фенолфталеин, дифениламин, о-оксихинолин, метиловый оранжевый и др. Коллектор должен обладать достаточной избирательностью действия по отношению к осаждаемому микрокомпоненту, достаточной плотностью, способствующей быстрому оседанию микрокомпонента, хорошей растворимостью в кислотах или других растворителях, не должен мешать последующему определению микрокомпонента или, в крайнем случае, легко от него отделяться, что позволяет получить соосаждаемые элементы практически в чистом виде. Наиболее полно этим требованиям отвечают органические соосадители. Из нескольких возможных кол- [c.103]

    Приведем пример дробного обнаружения катионов кальция. Лучше всего его обнаружить в виде оксалата. В этом случае алюминий, хром, марганец, железо и другие катионы маскируются в виде комплексных оксалатов, легко растворимых в воде. Некоторые катионы тяжелых металлов — серебро, сурьма, ртуть, свинец, висмут не дают растворимых оксалатных комплексов, но осаждаются металлическим цинком. В раствор переходит ион цинка, не мешающий реакции на кальций и образующий комплексный оксалат. Стронции и барий не мешают реакции, так как осаждаются в виде сульфатов растворимость сульфата кальция 2,5 г/л, что позволяет уверенно обнаружить кальций в фильтрате в виде оксалата кальция после осаждения мешающих катионов. [c.133]

    Действие серной кислоты и растворимых сульфатов на катионы металлов. Растворимые сульфаты и серная кислота осаждают белые осадки сульфатов кальция, стронция, бария, свинца, серебра и ртути (I) (табл. 26.7). Сульфаты кальция, свинца, серебра и ртути заметно растворимы в воде, поэтому эти ионы не полностью осаждаются сульфатом или разбавленной серной кислотой. В концентрированной серной кислоте сульфаты частично растворяются с образованием кислых солей  [c.554]


    Действие растворимых оксалатов на катионы металлов, Растворимые оксалаты (калия, натрия и аммония) взаимодействуют с ионами кальция, стронция, бария, свинца, серебра и ртути с образованием труднорастворимых оксалатов. Кроме того, при действии оксалатов в осадок переходят также оксалаты редкоземельных элементов, тория, скандия. ОксалатЫ редкоземельных элементов выпадают в осадок в слабокислой среде, хотя, казалось бы, растворимость оксалатов должна быть меньше в нейтральной или щелоч- [c.556]

    Галогениды металлов растворимы за исключением галогенидов свинца, хлоридов, бромидов и иодидов ртути (I) и серебра. Некоторые ионные фториды отличаются по растворимости от соответствующих хлоридов. Фторид кальция нерастворим, а фторид серебра растворим. Качественные реакции на галогениды металлов приведены в табл. 20.4. [c.427]

    НО проводить только При очень хорошей работе тяги вследствие ядовитости паров ртути. Растворимость Ыа и К в ртути при 20° равна примерно 1,0 вес.%. Амальгама кальция легко образуется из элементов при комнатной температуре в бомбе под давлением [330]. [c.64]

    Растворимость металлов в ртути весьма различна. Наибольшей растворимостью при комнатной температуре обладают таллий и индий (около 50%) растворимостью от 1 до 10% обладают цезий, рубидий, кадмий, цинк, свинец, висмут, олово, галлий от 0,1 до % — натрий, калий, магний, кальций, стронций, барий от 0,01 до 0,1% — литий, серебро, золото, торий от 0,01 до 0,001% — медь, алюминий и марганец. Практически нерастворимы в ртути металлы семейства железа, а также бериллий, германий, титан, цирконий, мышьяк, сурьма, ванадий, тантал, хром, молибден, вольфрам и уран. Для некоторых металлов растворимость в ртути сильно увеличивается с увеличением температуры. Известны амальгамы нерастворимых в ртути металлов эти системы представляют собой коллоидные растворы или взвеси в ртути. В таких амальгамах можно, например, довести содержание железа до [c.306]

    Подразделение анионов на аналитические группы определяется отношением анионов к реагентам-осадителям — растворимым солям кальция, цинка, бария, серебра, ртути и свинца. [c.28]

    Натрий и калий действуют на воду цри обыкновенной температуре, а некоторые из более тяжелых металлов — только при повышении температуры и уже не столь быстро и резко. Так, магний и кальций выделяют из воды водород только при кипении воды, а цинк и железо — только при накаливании до краснокалильного жара, целый же ряд тяжелых металлов, как медь, свинец, ртуть, серебро, золото и платина, вовсе не разлагают воды ни при какой температуре, не заступают в ней место водорода. Из этого ясно, что водород можно получить разложением водяного пара посредством металлического железа (или цинка), при возвышенной температуре. Опыт производится таким образом в фарфоровую трубку кладут куски железа (напр., стружки, гвозди), подвергают все действию сильного жара и пропускают водяной пар, который, приходя в прикосновение с железом, отдает ему кислород, чрез что водород его делается свободным и выходит из другого конца трубки вместе с неразложившимся водяным паром. Способ этот, исторически имеющий большое значение, практически мало удобен, требуя возвышенной температуры. Притом реакция эта, как обратимая (накаленная масса железа разлагает струю паров воды, образуя окалину и водород, а масса железной окалины, накаленная в струе водорода, образует железо и водяные пары), может служить для получения водорода только потому, что образующийся водород удаляется по своей упругости [98]. Если же кислородные соединения, т.-е. окислы, получающиеся из железа или цинка, будут иметь возможность переходить в раствор, то прибавляется сродство, действующее при растворении, и реакция может становиться необратимою, идущею сравнительно гораздо легче [99]. Так как окислы железа и цинка, сами по себе нерастворимые в воде, способны соединяться (имеют сродство) с кислотными окислами (как далее подробнее рассмотрим) и дают с кислотами или гидратами, обладающими кислотными свойствами, вещества солеобразные и растворимые, то, при действии таких кислотных гидратов или их водных растворов, т.-е. кислот, железо и циик способны выделять водород с большою легкостью, при обыкно- [c.93]

    Растворимые карбонаты образуют с катионами магния, кальция, стронция, бария, марганца, железа (II), серебра, ртути (I) белые осадки карбонатов, например  [c.28]

    Все соли их нерастворимы за исключением солей щелочных металлов и серебра. Соли кальция незначительно растворимы в минеральных маслах и более заметно в маслах растительного происхождения, причем, растворяясь, они увеличивают их вязкость. Образование медной соди, как указал Харичков, может иметь место из нафтеновых кислот и сернокислой меди. Серебряные соли легко растворимы в нефтяном бензине, соли же меди и ртути гораздо труднее. [c.158]


    Известно, что большинство солей сильных кислот (азотной, серной, соляной) хорошо растворяется в воде. Исключениями являются некоторые сульфаты (бария, стронция, кальция, свинца и закисной ртути), а также некоторые хлориды (серебра, закисной ртути и свинца). Часть этих соединений используют в количественном анализе для осаждения соответствующих ионов применение их описано в практической части. Однако большинство труднорастворимых соединений являются солями слабых кислот, кроме того, трудно растворимы также гидроокиси металлов. Поэтому для осаждения катионов в большинстве случаев их переводят в гидроокиси, а также в соли слабых неорганических или органических кислот. Из неорганических соединений наиболее широко используют сульфиды и гидроокиси металлов. [c.92]

    Металлы целесообразно выделять цинком после отделения серебра, ртути и свинца в виде хлоридов и щелочноземельных металлов и свинца в виде сульфатов. В растворе остается достаточно кальция для его обнаружения, особенно если раствор упарить, так как растворимость СаЗО 2,5 г/л. Его можно обнаруживать в виде оксалата кальция. При этом алюминий, хром, марганец, железо дают растворимые комплексы (Ме(С204).. 1 , не мешающие обнаружению кальция. [c.151]

    Проблема утилизации супертоксикантов сегодня стала действительно одной из серьезнейших проблем, которые стоят перед человечеством. При изучении процесса плазмохимической утилизации таких многофазных систем необходимо соблюдать несколько правил. Во-первых, необходимо прежде всего провести термодинамические расчеты таких систем и проследить возможность их нежелательного изменения при изменении внешних параметров, т.е. по сути провести термодинамическое моделирование процесса утилизации. Во-вторых, необходим контроль ситуации по электронным спектрам простых свободным радикала, в первую очередь по двухатомных радикалам, которые достаточно хорошо изучены, - это радикалы Сз, СК, РО, А10 и др. Возможна качественная диагностика по электронным спектрам многоатомных радикалов, таких как СРз, С Р, Сгр2 [1] и др. В-третьих, должны быть проработаны все стадии процесса независимо от вида супертоксикантов, т.е. процесс утилизации имеет гибкую схему. Так, например, для связывания хлорида водорода необходимо подавать в процесс нейтрализации либо гидрокарбонат натрия, либо карбонат кальция, в то время как для нейтрализации ртути желательно подавать сероводород, чтобы получить не растворимую в воде киноварь, которая к тому же является товарным продуктом.. Здесь мы не останавливаемся на тонкостях процесса работы с сероводородом и не рассматриваем альтернативные ситуации. [c.100]

    Природным аналогом вещества поликомпонентного состава, включающим разные группы легких органических соединений, тяжелые углеводороды, сопутствующие природные газы, сероводород и сернистые соединения, высокоминерализованные воды с преобладанием хлоридов кальция и натрия, тяжелые металлы, включая ртуть, никель, ванадий, кобальт, свинец, медь, молибден, мышьяк, уран и др., является нефть [Пиков-ский, 1988]. Особенности действия отдельных фракций нефти и общие закономерности трансформации почв изучены достаточно полно [Солнцева,. 1988]. Наиболее токсичны по санитарно-гигиеническим показателям вещества, входящие в состав легкой фракции. В то же время, вследствие летучести и высокой растворимости их действие обычно не бывает долговременным. На аоверхности почвы эта фракция в первую очередь подвергается физико-химическим процессам разложения, входящие в ее состав углеводороды наиболее быстро перерабатываются микроорганизмами, но долго сохраняются в нижних частях почвенного профиля в анаэробной обстановке [Пиковский, 1988]. Токсичность более высокомолекулярных органических соединений выражена значительно слабее, но интенсивность их разрушения значительно ниже. Вредное экологическое влияние смолисто-асфальтеновых компонентов на почвенные экосистемы заключается не в химической токсичности, а в значительном изменении водно-физических свойств почв. Если нефть просачивается сверху, ее смолисто-асфальтеновые компоненты и циклические соединения сорбируются в основном в верхнем, гумусовом горизонте, иногда прочно цементируя его. При этом уменьшается норовое пространство почв. Эти вещества малодоступны микроорганизмам, процесс их метаболизма идет очень медленно, иногда десятки дет. Подобное действие тяжелой фракции нефти наблюдается на территории Ишимбайского нефтеперерабатывающего завода. Состав органических фракций выбросов других предприятий представлен в подавляющем большинстве легколетучими соединениями. [c.65]

    Гросс и Сейлор [757] промывали хлороформ в течение 1 часа раствором едкого натра и дважды дистиллированной водой. Затем его обрабатывали тремя порциями концентрированной серной кислоты, два раза дистиллированной водой, один раз ртутью и, наконец, снова дистиллированной водой после этого хлороформ СУШИЛИ над хлористым кальцием и перегоняли на колонке высотой 1 м. Полученный препарат использовали для измерений растворимости. [c.391]

    Свойства. Цвет металлического стронция принято считать серебристобелым, хотя по мнению некоторых авторитетных химиков он но цвету -напоминает латунь. Вероятно желтый оттенок его обусловливается примесями. По своим хи мическим свойства. 1 он аналогичен кальцию. Получают его электролизом водного растаора хлорида стронция с ртутным катодом образующуюся амальгаму нагревают в токе, водорода для удаления ртути. Можно получать его также путей прока.тпваиия окиси с алюминием в вакуумной печи при 1000 . Гидроокись его более растворима в воде, чем гидроокись кальцин, и требуется более высокая температура дмя превращения ее в окись. Гидроокись применяется в свеклосахарном производстве, а нитрат— для приготовления фейерверков и красных сигнальных огней. [c.294]

    Как алифатические, так и ароматические изоцианаты могут образовывать тримеры. Эта реакция, как и димеризация, является особым примером взаимодействия изоцианата с ненасыщенным соединением. Такие катализаторы, как триэтилфосфин, которые ускоряют димеризацию ароматических изоцианатов, катализируют также триме-ризацию алифатических изоцианатов . Кроме того, тримеризация ароматических и алифатических изоцианатов происходит под действием ацетата кальция , ацетата ка-лия , формиата натрия , карбоната натрия , метилата натрия , триэтиламина , щавелевой кислоты , бензоата натрия в диметилформамиде , а также в присутствии большого количества растворимых соединений железа, натрия, калия, магния, ртути, никеля, меди, цинка, алюминия, олова, ванадия, титана и хрома , тетрабути-рата титана и кислорода ". Эффективными оказались также катализаторы Фриделя — Крафтса . Имеются данные, что тре/л-бутилизоцианат, возможно, вследствие стерических препятствий, не образует тримера даже в присутствии триэтилфосфииа . Наличие орто-заместителей у ароматических изоцианатов значительно понижает их способность к тримеризации. [c.108]

    Большинство сульфатов растворимо в воде. Трудно растворимыми являются сульфаты кальция, стронция, бария, свинца н закисной ртути. Анионы серной кислоты бесцветны. Все ее солн, образованные неокрашенными катионами, тоже бесцветны. [c.367]

    В данном случае испытуемое соединение растворимо в воде, следовательно, оно не относится к числу нерастворимых в воде фосфатов, арсенитов, силикатов, оксалатов, карбонатов, гидроокисей, сульфидов (за исключением соответствующих солей щелочных и щелочноземельных металлов и аммония), хлоридов подгруппы соляной кислоты, сульфатов бария, стронция, кальция, свинца и закисной ртути, цианидов, образованных катионами П1 и IV аналитических групп, кроме цианида ртути (II) и т.д. [c.422]

    Фториды щелочных металлов, серебра, алюминия, олова и ртути (II) легко растворимы. Наиболее трудно растворим фторид кальция aPg. [c.537]

    Амины и аммиак, которые хотя и не относятся к высокоселективным реагентам, обычно используют в качестве маскирующих агентов с показателями маскирования в пределах 5—25 по отношению к таким ионам металлов, как ртуть(И), медь(П), серебро, цинк, никель и кадмий (см. рис. 11-4). Буферные растворы уксусной кислоты можно использовать для маскирования ионов свинца с целью предотвращения осаждения сульфата свинца (показатель маскирования составляет примерно 3 или 4). Цитраты в виде 0,5 раствора при pH = 13 характеризуются показателями маскирования 26 — для алюминия и 22 —для железа(1П). Образование растворимых комплексов оксалата, цитрата и тартрата может быть использовано для предотвращения выпадения осадков гидроксидов многих металлов. При более низком значении pH оксалат в качестве маскирующего агента для этих ионов лучше, чем цитрат. Цианиды в реакции с ЭДТА при высоком pH маскируют ионы таких металлов, как серебро, кадмий, кобальт, медь, железо, ртуть, никель и цинк, однако они не оказывают влияния на алюминий, висмут, магний, марганец, свинец и кальций. Следовательно, цианиды можно использовать при дифференцирующем титровании ЭДТА смесей этих металлов. Часто вместо цианидов для маскирования предлагаются тиолы, поскольку они менее токсичны при низком [c.233]

    Впоследствии оба эти правила были объединены в так называемое правило осаждения и адсорбции Панета—Фаянса, которое было сформулировано следующим образом Радиоэлемент, находящийся в виде катиона, тем сильнее адсорбируется выделяющимся или заранее образованным осадком, чем менее растворимо соединение, которое он образует с анионом осадка . По мере накопления экспериментального материала появились факты, находящиеся в противоречии с первоначальной формулировкой этого правила. Например, ThB не осаждается с осадком ни двухвалентной, ни одновалентной иодистой ртути, хотя растворимость иодистого свинца очень мала малые количества радия не осаждаются с осадком сернокислого кальция, хотя сульфат радия является одной из наименее растворимых солей радия. В настоящее время известно очень много таких примеров. [c.425]


Смотреть страницы где упоминается термин Кальция растворимость в ртути: [c.17]    [c.164]    [c.240]    [c.16]    [c.127]    [c.144]    [c.29]    [c.65]    [c.172]    [c.484]    [c.30]    [c.324]    [c.44]    [c.20]    [c.22]    [c.102]   
Производство хлора и каустической соды (1966) -- [ c.166 ]




ПОИСК





Смотрите так же термины и статьи:

Кальций растворимость



© 2025 chem21.info Реклама на сайте