Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Способность к ионному обмену

    Ионит можно представить себе состоящим из каркаса, или матрицы, молекулы которой способны к ионному обмену. Матрица несет положительный или отрицательный заряд, который компенсируется зарядом ионов противоположного знака, так что в целом ионит нейтрален (рис. III.1). Заряд матрице придают группы атомов, обычно это кислотные или основные остатки молекул, например [c.100]

    Полная обменная емкость характеризуется общим количеством способных к ионному обмену однозарядных ионов ионита (в моль на 1 г сухой массы ионита). Ее можно установить следующим способом ионит в Ыа-форме обрабатывают несколько раз 3 н. раствором сильной кислоты до перевода всех ионнообменных групп в Н-форму. Затем ионит промывают водой до нейтральной реакции, пропускают через него концентрированный раствор хлорида натрия и элюат титруют. [c.248]


    Катиониты диссоциируют на небольшие, подвижные и способные к ионному обмену катионы (например, Н+) и высокомолекулярный анион (К - ), а аниониты дают мелкие, легко перемещающиеся анионы (наиример, ОН ) и высокомолекулярный катион (К +). [c.192]

    Методы ионного обмена. Рассмотренные методы все-таки не дают той степени умягчения, которая требуется для некоторых областей применения воды кроме того, они громоздки и связаны со значительными расходами реагентов. В последние годы широкое распространение получили методы ионного обмена. Твердые материалы, способные к ионному обмену с окружающей средой, получили название ионитов. Сюда относятся различные вещества неорганические и органические, природные или синтетические. Одним из простейших ионообменных материалов является сульфоуголь, получаемый обработкой бурых углей концентрированной серной кислоты при нагревании. В настоящее время наибольшее значение приобрели различные ионообменные смолы, вырабатываемые на основе синтетических полимеров. В зависимости от того, какие ионы в этих смолах обмениваются — катионы или анионы, — различают катиониты и аниониты. Иониты представляют собой твердые электролиты, у которых один поливалентный ион является нерастворимым, а ионы противоположного знака способны к обмену на ионы, находящиеся в окружающем растворе. [c.70]

    В большинстве случаев коллоидные частицы глинистых веществ имеют отрицательный заряд (это подтверждается тем, что при электрофорезе они осаждаются на аноде) каждая частица окружена водной (гидратной) оболочкой и слоем катионов (противоионов), которые менее прочно связаны с коллоидной частицей и способны к ионному обмену. [c.117]

    Способность к ионному обмену определяется строением ионита, представляющего собой каркас , на котором закреплены активные группы. Таким образом, ионит можно рассматривать как поливалентный ион с отрицательным или положительным зарядом, связанный ионной связью с подвижными ионами противоположного знака. [c.285]

    Органические иониты. Многие органические вещества, такие, как уголь, целлюлоза, проявляют незначительную ионообменную способность [43]. Эти свойства можно повысить, проводя соответствующую химическую обработку соединения (например, окисление действием серной или азотной кислоты). При этом возникают новые группы, способные к ионному обмену (—ОН —СООН —ЗОзН). Применение таких ионитов ограничено вследствие их неустойчивости к действию щелочей. [c.372]

    Общая обменная емкость характеризуется общим количеством способных к ионному обмену групп в ионите, полезная емкость является частью общей емкости, т. е. обменной емкостью ионита в конкретных условиях. [c.375]


    Способность к ионному обмену многих неорганических веществ, главным образом алюмосиликатов, известна давно. Уже в конце прошлого столетия некоторые природные и синтетические алюмосиликаты нашли применение для умягчения воды, очистки сахарного сиропа от калия. Однако известные в то время неорганические иониты (глинистые минералы, синтетические алюмосиликаты — пермутиты) обладали низкой химической устойчивостью и небольшой обменной емкостью, ограничивших их применение. Появление синтетических ионообменных смол привело к длительному забвению неорганических ионитов. Однако развитие в послевоенные годы радиохимии и атомной энергетики потребовало создания радиационно и термически стойких ионообменных материалов, обладающих к тому же высокой селективностью. Этим требованиям не удовлетворяли имевшиеся в то время органические ионообменные смолы, и внимание исследователей разных стран вновь привлекли неорганические соединения. [c.670]

    Высокая избирательная способность окиси алюминия дает возможность получать четко разделенные зоны окрашенных ионов и молекул при сорбции их из растворов, что очень важно для аналитической хроматографии. Окись алюминия обладает свойствами как катионита, так и анионита, в зависимости от способа приготовления. Химически чистая окись алюминия практически не обладает способностью к ионному обмену. Для исиользования окиси алюминия в качестве ионита ее активируют, в резуль  [c.149]

    Рассмотренные ионообменные смолы, широко используемые на практике для поглощения катионов или анионов из растворов, обычно называют ионитами. Этому термину следует, однако, придать более общий смысл и называть ионитами все вещества и материалы, способные к ионному обмену в растворе, подразделяя их на высокодисперсные (гетерогенные ионные адсорбенты) [c.185]

    Таким образом, иониты —все вещества и материалы, способные к ионному обмену в растворе. Их подразделяют на высокодисперсные гетерогенные адсорбенты и высокомолекулярные иониты и те, и другие, в свою очередь, делятся на аниониты и катиониты. [c.173]

    Таким образом, иониты — все вещества и материалы, способные к ионному обмену "в растворе. Их подразделяют на высокодисперсные гетероген- [c.190]

    Изотерма адсорбции, получаемая экспериментально, представляет собой (при разных температурах для одного вещества или для разных веществ при одной и той же температуре) кривую Ленгмюра (моно-молекулярная адсорбция) или s-образную кривую (полимолекулярная адсорбция), или прямую линию (простое распределение по закону В. Нернста). А. В. Раковским и С. М. Липатовым была изучена ионообменная адсорбция. Этот процесс происходит в гетерогенной среде на границе раздела раствор — ионит. В качестве ионитов берут многие твердые, практически не растворимые в воде и органических растворителях материалы, способные к ионному обмену. Практически наиболее важны иониты, состоящие из высокомолекулярных соединений с сетчатой или пространственной структурой (см. рис. 95). [c.518]

    Процессы ионного обмена имеют важное значение в природе и технике. Так, к интенсивному ионному обмену способен ряд глинистых минералов, представляющих собой слоистые алюмосиликаты с толщиной слоев (межплоскостным расстоянием, перпендикулярным плоскости спайности) около 9 А. Роль потенциалопределяющих ионов играют покрывающие поверхности таких тонких пластинок кремнекислотные группы, тогда как противоионами, способными к ионному обмену, являются катионы. В зависимости от состава среды глины могут содержать в качестве противоионов ионы натрия (Na-форма глин), кальция и др. [c.212]

    Способность к ионному обмену в значительной степени определяет функционирование и плодородие почв, которые являются сложной дисперсной системой, содержащей высокодисперсные нерастворимые силикаты и алюмосиликаты (прежде всего в виде кремнезема и глин) и органо-минеральные соединения, образующиеся при разложении органических остатков (в целом — почвенный поглощающий комплекс, по Гедройцу). Состав почв, их способность к ионному обмену и их плодородие в большой мере зависят от климатических условий. Выветривание горных пород приводит к образованию различных глинистых минералов, способных к обмену катионов, при емкости обмена до 1 г-экв/кг. [c.212]

    Способность к ионному обмену в значительной степени определяет функционирование и плодородие почв, которые 254 [c.254]

    Ионообменные смолы получают поликонденсацией или полимеризацией. Благодаря образованию поперечных связей между макромолекулами полимера, иониты обладают объемной сетчатой структурой, с размещением в определенных местах активных групп, способных к ионному обмену. [c.361]


    Вещества, способные к ионному обмену, получили название ионитов, В зависимости от того, какой вид [c.173]

    Обменная емкость определяется числом функциональных групп, способных к ионному обмену, в единице сухого (мэкв/г) или набухшего ионита (мэкв/см ). Полная обменная емкость характеризуется максимальной способностью ионита к ионному обмену и соответствует числу функциональных групп. [c.20]

    Ионитами называются материалы (полиэлектролиты), прак тически не растворимые в воде и органических растворителях способные к ионному обмену. [c.252]

    Ионитами называют твердые, нерастворимые в воде и органических растворителях природные или искусственные материалы, способные к ионному обмену. [c.345]

    Как особый класс представляют цеолитсодержаш,ие алюмо — силикатные катализаторы крекинга нефтяного сырья, в которых главную роль играют кристаллические цеолиты, имеющие каркасную структуру с относительно большими сотообразными полостями, которые сообщаются окнами малых размеров так, что все полости связаны между собой. В 1 г цеолита имеется около 10 полостей и 800 поверхности, способной к ионному обмену на металлы. Цеолиты диспергируются в аморфной матрице, которая выполняет роль носителя с крупными порами, и при крекинге способствуют первичному распаду высокомолекулярного нефтяного сырья и тем самым готовит сырье для последующих вторичных реакций на цеолите. [c.84]

    Синтетические иониты представляют собой твердые нерастворимые в воде и органических растворителях высокомолекулярные соединения, способные к ионному обмену. В зависимости от характера ионогенных групп иониты делятся на три основные группы катиониты, аниониты и амфотерные иониты — нолиамфолиты. [c.90]

    Необходт1мо отметить, что противоионы двойного электрического слоя могут обмениваться на другие ионы того же знака, т, е. способны к ионному обмену. Особенно ярко это проявляется в специальных ионообменных материалах. [c.63]

    Первые сообщения об ионообменной адсорбции были сделаны в 1850 г. независимо друг от друга английскими учеными Томпсоном и Уэем. Изучая способность почв к поглощению удобрений и их вымывание дождем, они обнаружили явление обмена ионов между почвой и водными растворами солей. Несмотря на то что поглощение почвой солей (например, получение питьевой воды из морской) было известно уже в древности, серьезные исследования этого явления начались именно с указанных работ. Удовлетворительное объяснение обмена ионов (обратимость процесса, эквивалентность обмена) стало возможным только после открытия закона действия масс (1876 г.). Вещества, проявляющие способность к ионному обмену и используемые для адсорбции ионов, получили название ионообменников или ионитов. [c.164]

    Природными ионитами оргаршческого происхождения являются, например, гумусовые вещества, молекулы которых содержат карбоксильную группу, способную к ионному обмену. Составляющие почву вещества обладают амфотерными свойствами и поэтому могут обменивать как катионы, так и анионы. Природные иониты не нашли широкого технического применения, так как имеют ряд недостатков, в частности, они химически нестойки, не обладают достаточной механической прочностью. [c.165]

    Адсорбенты, способные к ионному обмену, называют ионитами. Они встречаются в природе (некоторые силикаты и т. п.), а также изготавливаются искусственно (сульфоугли п т. п.) или синтезируются (ионообменные смолы и т. п.). [c.126]

    Некоторые алюмосиликаты обладают рыхлой структурой и способны к ионному обмену. Такие силикаты — природные и особенно искусственные — применяются для водоумягчения (см. разд. 37.2). Кроме того, благодаря своей сильно развитой поверхности, они используются в качестве носителей катализаторов, т. е. как материалы, пропитываемые катализатором. [c.420]

    По строению полимерного каркаса различают ионообменные смолы гелевой структуры и макропористые. В гелевидных смолах отсутствуют пустоты, заполняемые воздухом или жидкой средой. Они способны к ионному обмену только после набухания, т, е. проникновения молекул растворителя в пространство между полимерными звеньями. [c.220]

    Набухающие полимеры и пористые полимеры с жестким скелетом. Давно известны многие органические набухающие сорбенты— природные, например крахмал и целлюлоза, и синтетические. Среди последних широкое применение в аналитической практике для препаративного выделения различных ионов и устранения жесткости воды приобрели набухающие в водных растворах полимеры, содержащие функциональные группы, способные к ионному обмену — иониты. В сухом состоянии такие полимеры практически не имеют пор. Если эти полимерные сорбенты содержат полярные функциональные группы, например гидроксильные (целлюлоза, крахмал), амино- (многие аниониты) и сульфогруппы (катиониты), то они сорбируют пары таких полярных веществ, как спирты и особенно вода. Эта сорбция сопровождается набуханием полимера, что проявляется как в увеличении его объема, так и в обширном сорбционном гистерезисе. В отличие от капиллярно-конденсационного гистерезиса в адсорбентах с жестким скелетом, начинающегося при достаточно высоких относительных давлениях пара после обратимой начальной части изотермы адсорбции (см. рис. 3.4, 3.5 и 5.2), сорбционный гистерезис в органических набухающих сорбентах простирается вплоть до относительного давления пара р1ро = 0. [c.112]

    Однако ионы оксония не могут удалиться от полимерной цепи, имеющей сильный отрицательный заряд. Они образуют вокруг цепи своего рода ионную атмосферу (см. 13.2). Однако она удерживается только электростатическим взаимодействием, и потому легко осуществима замена катионов Н3О+ другими катионами. Замена одних подвижных ионов заряженных цепей поперечо-сшитых полимеров другими получила название ионного обмена. Сами полимеры, способные к ионному обмену, называются ионообменными смолами или ионитами. Полимер, который является полианионом, способен к обмену катионов и называется катионитом. Полимер, который содержит положительно заряженные группы, иапример фрагменты [c.146]

    Способностью к ионному обмену обладают некоторые природные соединения, например алюмосиликаты. Однако более широкое применение получили синтетические ионообменники, которыми обычно служат полимерные материалы. В качестве примера полимеров, служащих основой (матрицей) для ионитов, можно назвать сополимеры сти-)ола с дивинилбензолом и метакриловой кислоты с дивинилбензолом. онит состоит из матрицы, на которой имеется большое число функциональных групп. Последние или вводятся в мономер или в реакционную смесь при полимеризации, или прививаются к полимеру после полимеризации. Функциональные группы способны диссоциировать в растворе, при этом ионы одного знака заряда остаются на ионите, а ионы другого знака заряда переходят в раствор. В зависимости от того, какие ионы переходят в раствор, различают катиониты и аниониты. [c.348]

    Селективность. Под селективностью понимают свойство ионита в одних, и тех же условиях по-разному вступать реакции ионного обмена с разными ионами. Для пояснения селективности существуют определенные модели, но область их применения крайне ограниченна [44]. В соответствии с молекулярной теорией селективность ионита по отношению к ионам равных зарядов определяется степенью ассоциации активных групп ионитов с про-тивоионами. В зависимости от плотности активных групп в ионите между ними (группами, способными к ионному обмену) возникает сила отталкивания, что является фактором, способствующим набуханию ионитов. Действию этой силы противодействует сила структурного взаимодействия. На основании изложенного можно сделать вывод, что селективность ионита возрастает с увеличением степени сшитости ионита, обменной емкости и с увеличением концентрации раствора, проходящего через ионит. Райс и Харрис-153] дали количественное описание селективности, применимое для оценки селективности ионита в неводных средах, но непригодное для ионитов с низкой степенью сшитости и с высокой набухаемостью. В ряде теорий исходят из представления о границе раздела фаз ионит — раствор как о полупроницаемой мембране. В этом случае применимо уравнение Доннана 142], и можно сделать вывод, что селективность ионита зависит от его набухания или-обменного объема. При этом не учитывают межионные взаимодействия, особенно сильные в случае ионитов с высокой обменной емкостью. Поскольку все указанные теории не являются общими, при оценке селективности ионита применяют следующие простые правила [54]  [c.376]

    Благодаря обменной адсорбции твердый адсорбент, практически нерастворимый в воде (или другом растворителе), вступает в активное взаимодействие с соприкасающимся с ним раствором. Ионообменный процесс протекает так, что при адсорбции электролитов избирательно адсорбируются катионы или анионы, заменяющиеся на эквивалентное количество ионов того же знака, содержащихся в адсорбенте. Адсорбенты, способные к ионному обмену, встречаются и в природе (некоторые силикаты и алюмосиликаты, пермутиты и др.), а также изготовляются специально (например, сульфоугли) и синтезируются (ионообменные смолы). [c.189]

    Адсорбенты, способные к ионному обмену, носят общее название — ионытбл В зависимости от того, какие ионы активных групп ионита и раствора участвуют в реакции обмена, различают катионный и анионный обмен. [c.189]

    К синтетическим неорганическим сорбентам, обладающим способностью к ионному обмену, относятся силикагель, алюмосиликаты, труднорастворимые оксиды и гидроксиды ряда металлов (алюминия, хрома, олова, циркония, тория, титана и др.), полимерные соли циркония, титана и других элементов, соли гетерополикислот. Неорганические синтетические иониты отличаются большим разнообразием свойств, для них хара стерно селективное поглощение отдельных ионов из их смесей в растворах. В отличие от природных минеральных сорбентов, синтетические обладают в ряде случаев значительно большей на-бухаемостью в воде и водных растворах, что увеличивает степень участия ионогенных групп в сорбционном процессе. [c.41]

    Оксиды и гидроксиды ряда металлов также проявляют способность к ионному обмену. Однако в этом отношении они ведут себя неодинаково. Например, кислые оксиды молибдена (VI), вольфрама (VI), урана (VI), ванадия (V) практически не обладают анионообменной способностью, а основные оксиды титана (IV), висмута (1П) обладают лишь незначительной катионообменной способностью и ведут себя как аниониты. Такие амфотерные гидроксиды, как А1(0Н)з, 5п(ОН)4, ЫЬ(ОН)в, Та(ОН)б в кислой среде поглощают анионы, а в щелочной — катионы. [c.45]

    Разделение компонентов смеси может происходить по различным признакам коэффищ1ентам адсорбции, распределения, растворимости, ро способности к ионному обмену или размерам молекул и т. д Хроматографический анализ можно проводить в колонках, кациллярах, в тонком слое сорбента. Компоненты смеси собирают по фракциям на выходе из колонки после элюции соответствующим растворителем или вытеснителем. [c.169]

    Неподвижная фаза. Способностью к ионному обмену обладают некоторые минеральные материалы. Среди них цеолиты (анальцит, фозажит, стильбит), глинистые материалы (каолинит, монтмориллонит, слюды, силикаты). Такой способностью обладают также синтетические неорганические иониты (иониты на основе циркония, оксида алюминия), а также специально приготовленные сульфированные угли. Нашедшие наибольшее практическое применение ионообменные смолы состоят как бы из двух частей матрицы (каркаса), не участвующей в ионном обмене, и ионогенных групп, структурно связанных с матрицей. Такой матрицей чаще всего является сополимер дивинилбензола и полистирола. Дивинилбензол как бы сшивает поперечными связями цепи полистирола, что приводит к образованию зерен полимера, пронизанных порами. [c.604]

    Рентгеноструктурные исследования, проведенные в начале 30-х годов текущего столетия, объяснили двойную загадку цеолитов — способность к ионному обмену и обратимую потерю и адсорбцию кристаллизациопноп воды. Ренгенограммы различных цеолитов показали, что каждый кристалл содержит решетку с мельчайшими полостями, соединенными каналами или [c.68]

    См. лит. при ст. Радиационная химия, Радшгционно-химиче ская технология. Радиоактивность. А. X. Брегер. ИОНИТЫ (ионообменники, ионообменные сорбенты), вещества, способные к ионному обмену при контакте с р-рами электролитов. Большинство И.— твердые, нерастворимые, ограниченно набухающие в-ва. Состоят из каркаса (матрицы), несущего положит, или отрицат. заряд, и подвижных противоионов, к-рые компенсируют своими зарядами заряд каркаса и стехиометрически обмениваются на противоио-ны р-ра электролита. По знаку заряда обменивающихся ионов И. делят на катиониты, аниониты и амфолиты, по хим. природе каркаса — на неорг., орг. и минер.-органические. Неорг. и орг. И. могут быть природными (напр., цеолиты, целлюлоза, древесина, торф) и синтетическими (силикагель, АЬОз, сульфоуголь и наиб, важные — ионообменные смолы). Минер.-орг. состоят из орг. полиэлектролита на минер, носителе или неорг. И., диспергированного в полимерном связующем. Выпускаются в виде зерен сферич. или неправильной формы, порошков, волокон, тканей, паст и изделий (напр., мембран ионитовых). Примен. для очистки, разделения и концентрирования в-в из водных, орг. и газообразных сред, напр, для очистки сточных вод, лек. ср-в, сахара, выделения ценных металлов, при водоподго-товке носители в хроматографии гетерог. катализаторы. [c.224]

    В ионообменной хроматографии разделение компонентов смеси достигается за счет обратимого взаимодействия ионизирующихся веществ с ионными группами сорбента. Сохранение электронейтральности сорбента обеспечивается наличием способных к ионному обмену противоионов, расположенных в непосредственной близости к поверхности. Ион введенного образца, взаимодействуя с фиксированным зарядом сорбента, обменивается с противоионом. Вещества, имеющие разное сродство к фиксированным зарядом, разделяются на анионитах или на катионитах. Аниониты имеют на поверхности положительно заряженные группы и сорбируют из подвижной фазы анионы. Катиониты соответственно содержат группы с отрицательным зарядом, взаимодействующие с катионами. [c.31]


Смотреть страницы где упоминается термин Способность к ионному обмену: [c.332]    [c.254]    [c.255]    [c.509]    [c.509]    [c.160]    [c.164]   
Очерки кристаллохимии (1974) -- [ c.324 ]




ПОИСК





Смотрите так же термины и статьи:

Ионный обмен

Ионный обмен и иониты

Обмен ионов



© 2025 chem21.info Реклама на сайте