Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Соединения алюмогидридом натрия

    Аналогичным образом проведена реакция алюмогидридов натрия и калия с фураном и тиофеном [9]. При этом были получены с количественным выходом соответствующие алюминийорганические соединения  [c.336]

    Имины, основания Шиффа, гидразоны и другие соединения, содержащие связь С = Ы, восстанавливаются под действием алюмогидрида лития, боргидрида натрия, натрия в этаноле, водорода в ирисутствии катализатора, а также и других восстановителей [266]. Алюмогидрид лития восстанавливает также [c.361]


    По той же причине при использовании алюмогидрида лития необходимо работать в безводной среде. Следовательно, этот реактив непригоден для восстановления соединений, не растворяющихся в индифферентных органических растворителях, например, сахаров. В этих случаях прекрасно действует борогидрид натрия, поскольку он разлагается водой лишь медленно. [c.189]

    Применяют различные восстановители, такие, как натрий в спирте, сульфит натрия, водород в присутствии платины, алюмогидрид лития и амины, однако самым простым восстанавливающим агентом из всех является, по-видимому, раствор иодистого калия в метиловом спирте, эфире и уксусной кислоте [241. Гидроперекиси можно разлагать также путем нагревания с водным раствором щелочи. Выходы при этих реакциях высокие так, например, при реакции соединения I получают 80% соединения И наряду с некоторыми-кислыми продуктами [1]. [c.250]

    Легкость протекания этой реакции существенно зависит от природы субстрата. В ряду неактивированных алкил- и циклоалкил-галогенидов связь С-Р обычно устойчива к действию комплексных гидридов металлов, другие галогены по реакционной способности располагаются в следующем порядке I > Вг > С1. Алюмогидрид лития является вполне подходящим реагентом для восстановления этого класса соединений. Борогидрид натрия (в апротонных растворителях) также часто используется и имеет преимущества перед LiAlH4 - он обладет большей селективностью по отношению к другим восстанавливаемым группам в той же молекуле. Наиболее селективным, однако, является цианоборогидрид натрия, который при pH 6 восстанавливает лишь немногие функциональные группы  [c.144]

    Реакция. Селективное восстановление алюмогидридом лития карбонильной группы в а, Р-ненасышенных кетонах до гидроксильной в ал-лильном положении. Цианоборогидрид натрия дает сходные результаты. Более селективным восстановителем является 9-борабицикло[3.3.1]-нонан (9-ББН), который, в отличие от иА1Н4 и ЫаВНзСК, восстанавливает также циклопентен-2-он до циклопентен-2-ола. При восстановлении а, Р-ненасыщенных карбонильных соединений борогидридом натрия образуются невоспроизводимые количества побочного насыщенного спирта. [c.78]

    Существует много комплексных гидридов, произведенных из алюмогидрида лития и борогидрида натрия или других барогидридов путем замещения одного или нескольких атомов водорода на алкокси- или алкильные группы. Имеется ряд обзоров по восстановлению этими и другими реагентами [36, 404]. В работе [405] обсуждается их избирательность по отношению к различным функциональным группам, а в [67] приведено много примеров их использования. Прибавление к комплексным гидридам металлов кислот Льюиса, таких как хлорид алюминия или трифторид бора, или других соединений дает смешанные гидриды , также представляющие ценность [67, 406]. Исследована кинетика восстановления кетонов алюмогидридом и алюмодейтеридом лития и алюмогидридом натрия приведены ссылки на аналогичные исследования борогидрида натрия и многих других алюмогидридов [408]. Алюмогидрид лития, стандартный реагент для восстановления кетонов во вторичные спирты, обладает очень высокой реакционной способностью и лишен избирательности, поскольку восстанавливает практически любую группу, способную к восстановлению, за исключением изолированных двойных связей. На другом конце спектра реакционной способности находятся борогидриды натрия и цинка, которые восстанавливают альдегиды, кетоны и ацилхлориды, а также циано- [c.654]


    Образующийся при этом амин и растворитель отгоняют и в отстатке получают в чистом виде борогидрид металла. Диметиламин-боран и гидрид натрия при умеренном нагревании в диглиме (не выше 40—45°) образуют диметилами ноборогидрид натрия Na [BHgN (СНз)2] [133]. Борогидриды металлов образуются при взаимодействии триалкиламин-боранов и алкоголятов металлов или металлоорганических соединений [81, 134] с алюмогидридом натрия [85], а также при нагревании триалкиламин-боранов с ацетиленидами металлов и водородом [135.  [c.70]

    Захаркин и Гавриленко [650] установили, что при гидрировании смеси натрия и алюминия в отношении Na А1 = 1 1 водорода поглощается значительно больше, чем требуется для получения алюмогидрида натрия. При экстракции последнего из реакционной смеси тетрагидрофураном выход его получался не более 60%. Авторы [650] предположили возможность одновременного получения другого соединения — NagAlHg. [c.181]

    Косвенный метод заключается в превращении спиртов в сульфонаты и восстановлении этих соединений (реакция 10-78). Эти две последовательные реакции можно провести, не выделяя сульфонат, если спирт обработать системой пиридин — 80з в тетрагидрофуране и затем добавить алюмогидрид лития [911]. Другой метод косвенного восстановления [912], который можно провести в одну стадию, включает обработку спирта (первичного, вторичного или бензильного) иодидом натрия, цинком и триметилхлоросиланом [913]. При этом спирт сначала превращается в иодид, который и восстанавливается. В случае а-гидроксикетонов гидроксильную группу можно восстановить косвенным методом, не затрагивающим карбонильную группу для этого субстрат последовательно обрабатывают тозилатом [c.179]

    Эта реакция проводилась под действием многих реагентов, чаще всего используется цинк, магний и иодид-ион 327а], реже — фениллитий, фенилгидразин, хлорид хрома (И), нафталин-натрий [328], N3—КНз [329], ЫагЗ в ДМФ [330] и алюмогидрид лития [331]. Реация дает хорошие выходы, но с синтетической точки зрения она не слишком выгодна, так как исходные выг(-дигалогениды приходится получать путем присоединения галогена к двойной связи (т. 3, реакция 15-27). Однако ее преимущество состоит в том, что положение двойной связи в продукте заранее точно известно. Например, из соединений типа X—С—СХг—С—X или X—С—СХ = С можно получить аллены, которые труднодоступны другими методами [332]. Путем 1,4-элиминирования были получены кумулены  [c.70]

    При обработке соединений, содержащих двойные связи, озоном (обычно при низких температурах) получаются вещества, называемые озонидами (11), которые можно выделить. Многие из них взрывоопасны, поэтому их чаще разлагают действием цинка в уксусной кислоте или путем каталитического гидрирования, что приводит к 2 молям альдегида или 2 молям кетона или к 1 молю кетона и 1 молю альдегида в зависимости от природы заместителей у двойной связи в олефине [148]. Разложение озонидов И можно осуществить также с помощью многих других восстановителей, среди которых триметилфосфит [149], тиомочевина [150] и диметилсульфид [151]. Однако озониды можно также либо окислять действием кислорода, перкислот или Н2О2, в результате чего получаются кетоны и (или) карбоновые кислоты, либо восстанавливать действием алюмогидрида лития, боргидрида натрия, ВНз или путем каталитического гидрирования избытком Нг, что дает 2 моля спирта [152]. Озониды можно также обрабатывать либо аммиаком и водородом в присутствии катализатора, что приводит к соответствующим аминам [153], либо спиртом и безводным НС1, в результате чего получаются сложные эфиры карбоновых кислот [154. Следовательно, озонолиз — синтетически важная реакция. В прошлом эта реакция была основой ценного метода установления положения двойной связи в неизвестных соединениях, хотя с распространением инструментальных методов установления структуры этот метод применяется все реже. [c.280]

    Восстановление карбонильных соединений до спиртов обычно проводится с помощью алюмогидрида лития (ЫА1Н4), боро-гидрида натрия (МаВН4), металла и кислоты либо путем каталитического гидрирования (На + катализатор, которым служит обычно благородный металл или СгаОз+А Оз)  [c.163]

    Для восстановления ароматических соединений наиболее часто применяются водород в присутствии катализаторов, металлы и некоторые соли металлов переменной валентности — железо, цинк, О.ЛОВО, хлорид олова(II), натрий и соединения серы —соли сероводородной кислоты — сульфид и гидросульфид натрия, дитиони-стой кислоты —дитионит натрия (Na2S204), сернистой кислоты — сульфит и гидросульфит натрия. Приобретают значение также смешанные гидриды металлов — алюмогидрид лития (LiAlH4), бор-гидрид натрия (NaBH4) и др. [c.292]


    Обмен галогена на водород в галогепорганнческих соединениях с галогеном яри двойной или тройной связи часто удается под действием амальгамы алюминия [373], алюмогидрида лития [374], а также цинковой ныли в смеси пиридина и уксусной кислоты [375], причем кратные снязи между атомами углерода по затрагиваются, Под действием амальгамы, натрия и первую очередь чаще всего происходит гидрирование по двойной связи, как, например, в випилгалигепидах. [c.73]

    Наиболее широкое практическое применение находят алюмогидриды и борогидриды металлов. Из этой группы соединений чаще других используют алюмогидрид лития Ь1А1Н4 и борогидрид натрия НаВН4. [c.104]

    Мощные восстановительные свойства и связанный с этим широкий спектр действия алюмогидрида лития оказываются нежелательными при восстановлении полифункциональных соединений, так как могут препятствовать селективности реакции при наличии в молекуле нескольких групп зачастую не удается восстановить одну из них, не затрагивая при этом другие, способные к восстановлению группы. И здесь становятся очевидными преимущества борогидрида натрия. Он является мягким восстановительным реагентом, доступен, не реагирует в отличие от Ь1А1Н4 с водой и спиртами, и поэтому условия работы с ним чрезвычайно просты. Благодаря ослабленным восстановительным свойствам КаВН4 превращает альдегиды и кетоны в соответствующие спирты в присутствии различных функциональных групп, таких как нитро-, карбалкокси-, галогено-, нитрильная группы. Например  [c.104]

    Однако результат восстановления а,-непредельных альдегидов и кетонов не всегда бывает однозначным. В зависимости от строения субстрата, природы реагента и условий реакции конечный продукт может представлять собою непредельный или предельный спирт. Так, если сравнить наиболее часто употребляемые алюмогидрид лития и борогидрид натрия (табл. 2.4), видно, что последний менее подходит для селективного восстановления аф -непредельных соединений он чаще, чем алюмогидрид лития, восстанавливает одновременно карбонильную группу и двойную связь. При использовании Ь1А1Н4 осложнений иногда удается избежать благо-даря тщательному подбору условий (см. данные для коричного альдегида). В некоторых случаях хорошие результаты дает применение смеси Ь1А1Н4 и А1С1з, а также борогидрида натрия и хлоридов церия  [c.128]

    Имины, основания Шиффа, гидразины и другие соединения, содержащие связь С=К, восстанавливаются под действием Ь А1Н4 и НаВН4. Алюмогидрид лития и борогидрид натрия восстанавливают также и иминиевые соли. Реакции проводят в нейтральной или, лучше, в слабокислой среде. Поскольку цианоборогидриды обладают в этих условиях большей стабильностью, чем другие комплексные гидриды, их применение предпочтительнее. [c.142]

    Соединение II представляет собой озонид, получаемый при взаимодействии алкенов с озоном в инертном растворителе, а соединение I, так называемый мольозонид (первоначальный продукт присоединения молекулярного кислорода к ненасыщенному соединению), может быть получен в эфире при температуре ниже —110 С [12]. Такие мольозониды при температуре выше —100 °С разлагаются со взрывом. Хотя для восстановления обычных озонидов применяют различные восстановители,. в определенных условиях предпочтение следует отдать алюмогидриду лития [13]. При применении этога реагента получают хорошие выходы спиртов (примеры а, 6.1 и 2). Другим видоизменением этой реакции является проведение озонирования в смеси метилового спирта и диметилсульфида с целью прямого получения альдегида, который без выделения восстанавливают до спирта боргидридом натрия в этиловом спирте [14]. Спирты получают также из мольозонидов, образующихся из цис- и транс-алкенов при взаимодействии с изопропилмагнийбромидом, однако в этом случае из т/7йнс-олефинов образуются в основном 1,2-гли-коли, в то время как г ис-олефины гликолей не дают [15] [c.247]

    Нитрогруппу обычно восстанавливают алюмогидридом лития, являющимся одним из наиболее сильно действующих гидридов. Действительно, в то время как боргидрид натрия в водном растворе метилового спирта при 25 °С не действует на нитрогруппу [20], алюмогидрид лития в сочетании с палладием, нанесенным на активированный уголь, в щелочном растворе оказывает достаточно эф- фективное действие [21]. Восстановление третичных алициклических нитросоединений алюмогидридом лития осложняется изомеризацией образующихся в качестве промежуточных соединений производных тидроксиламина, что приводит к образованию первичных и вторичных аминов [22]. [c.472]

    Поскольку нитрозо- и гидроксиламиносоединения промежуточно образуются при восстановлении нитросоединений в амины, для их восстановления можно применять те же самые восстановители. Обычно для восстановления этих и других перечисленных в заглавии соединений, используются водород в присутствии платины или никеля Ренея, гидриды металлов (например, алюмогидрид лития) гидразин, гидросульфит натрия и т. д. Поскольку эти методы синтеза большого значения не имеют, рассмотрены просто примеры для каждого класса соединений. [c.475]

    Беншлфурфуриловый спирт. В литровую трехгорлую круглодонную колбу, снабженную мешалкой с ртутным затвором, капельной воронкой и обратным холодильником с хлоркальциевой трубкой, помещают раствор 4,5 г (0,12 моля) алюмогидрида лития в 250 мл эфира (примечание I). При перемешивании по каплям приливают раствор 21,6 г (0,1 моля) метилового эфира 5-бензилфуран-2-карбоновой кислоты в 150 мл сухого зфира с такой скоростью, чтобы эфир равномерно кипел. После окончания прибавления перемешивание продолжают еще в течение одного часа, после чего оставляют реакционную смесь на ночь. На следующий день, ири перемешивании осторожно, по каплям приливают 40 ял воды (примечание 2). Содержимое колбы отфильтровывают и фильтр промывают 4 порциями сухого эфира по 80 мл каждая. Соединенные фильтраты высушивают над безводным сернокислым натрием, отгоняют растворитель и остаток перегоняют в вакууме, собирая вещество, кипящее при 143—14572 ям. [c.22]

    Восстановление амида. В трехгорлую круглодонную колбу емкостью 0,5 литра, снабженную мешалкой с ртутным затвором, капельной воронкой и обратным холодильником с -клоркальциевой трубкой, помещают раствор 2,85 г (0,075 моля) алюмогидрида лития в 160 мл абсолютного эфира (примечание 3). На теплой водяной бане отгоняют эфир до остаточного объема 30—35 мл и прибавляют 50 мл сухого бензола. Пустив в ход мешалку, в течение 10—15 минут прибавляют из капельной воронки раствор 10,05 г (0,05 моля) фурфурилбензамида в 250 мл сухого бензола. Смесь умеренно кипятят на водяной бане в течение 4 часов, после чего при охлаждении водой и перемешивании по каплям прибавляют 30 мл воды (примечание 4) и затем продолжают перемешивание еще в течение одного часа. Бензольный раствор декантируют с осадка и осадок тшательно растирают с тремя порциями сухого эфира по 75 мл. Соединенные эфирные растворы высушивают над прокаленным сернокислым натрием, отгоняют растворитель и остаток перегоняют в вакууме, собирая вещество, кипящее при 125—127°/4 мм. [c.72]

    Метилиндол получали также восстановлением 1-метилин-доксила алюмогидридом лития Чтобы освободиться от соединений, в ИК-спектре которых имеются частоты, отвечающие NH-rpynne (индол, скатол), препарат следует кипятить с натрием в течение 2 дней. Затем непрореагировавший 1-метилин-дол отгоняют от натриевых производных и от смолообразных продуктов разложения. [c.92]

    Оксиметилферроцен получали конденсацией ферроцена с N-метилформанилидом, в результате чего образуется ферроцен-карбоксальдегид, который восстанавливали алюмогидридом лития боргидридом натрия или формальдегидом и щелочью Описанная выше методика основана на способе Линдсея и Хаузера Аналогичный способ был использован для превращения иодметилата грамина в 3-оксиметилиндол вероятно, этот метод применим и для получения других оксиметильных производных ароматических соединений. [c.121]

    В полулитровую круглодонную трехгорлую колбу, снабженную мешалкой, обратным холодильником с хлоркальциевой трубкой и капельной воронкой, помещают раствор 3,0 г, (0,08 моля) алюмогидрида лития в 150 мл абсолютного эфира и при перемешивании медленно прикапывают в течение 30—40 мин. раствор 8,75 г (0,05 моля) индолил-З-ук-сусной кислоты в смеси 100 мл абсолютного эфира и 50 мл бензола. Реакционную смесь нагревают на водяной бане 8 ч., затем дают охладиться до комнатной температуры и при перемешивании и охлаждении ледяной водой медленно по каплям приливают 25—30 мл воды в течение 20—25 мин. Эфиро-бензольный слой декантируют и остаток экстрагируют трижды бензолом, порциями по 80 мл. Соединенный- экстракт высушивают над безводным сернокислым натрием, рас1вири1ель отгоняют в вакууме водоструйного насоса и остаток кристаллизуют из 20 мл петролейного эфира. [c.56]

    Восстановление. В круглодонную колбу емкостью. 750 мл, снабженную обратным холодильником с хлоркальциевой трубкой, капельной воронкой и мешалко с ртутным затвором, помещают 7,6 г (0,2 моля] алюмогидрида лития в 260 мл абсолютного эфира (см. Синтезы гетероциклических соединений , 3, стр. 0) и при перемешивании в течение одного часа медленно приливают раствор 37 г -0,2 моля) этилового эфира а-(пиперидил-Г)-пропионовой кислоты в. 150 мл абсолютного эфира. Скорость прибавления регулируют так, чтобы эфир равномерно кипел. По окончании смесь перемешивают 2—3 часа при комнатной температуре и затем кипятят на водяной бане в течение 5 - 6 часов.. После о.хлаждения реакционной смеси, продолжая перемешивание, осторожно, по каплям приливают 30—40. i.i- воды (примечание 2) и затем 25 — 30 мл 50 /о раствора едкого, натра. Осадок отсасывают и промывают его 3 раза абсолютным эфиром, порциями по 30—40 мл каждая. Соединенные эфирные растворы высушивают над прокаленным сернокислым натрием, отгоняют растворитель и остаток перегоняют в пакууме, собирая вещество, кипящее при 100—102, 20. ил. [c.66]

    Б. N. ]М-Д и м е ти л ц и к л о ге к с и л м е т и л а м и н. В 3-литровую трехгорлую колбу, снабженную обратным холодильником и капельной воронкой (оба защищены осушительными трубками), помещают суспензию из 32 г (0,85 моля) алюмогидрида лития (примечание 4) в 400 мл абсолютного эфира (примечание 5). Смесь перемешивают магнитной мешалкой, применяя пластинку в 40 мм, покрытую тефлоном. Прибавляют раствор 133 г (0,85 моля) N. Ы-диметилциклогексанкарбоксамида в 300 мл абсолютного эфира (примечание 5) с такой скоростью, чтобы поддерживать спокойное кипение. Эта операция занимает около 1 часа. Затем колбу помещают на электрический колбонагреватель и смесь перемешивают и кипятят в течение 15 час. Колбонагреватель заменяют баней со льдом, а колбу снабжают эффективной механической мешалкой с затвором. Медленно при сильном перемешивании приливают воду (70 мл) после того как вся вода прибавлена, перемешивание продолжают еще 30 мин. Затем сразу приливают холодный раствор 200 г едкого натра в 500 мл воды и колбу приспосабливают для перегонки с водяным паром. Смесь перегоняют с водяным паром до тех пор, пока не начнет отгоняться нейтральный дистиллат всего собирают около 1,5 л дистиллата. Его подкисляют, для чего осторожно прибавляют 95 мл концентрированной соляной кислоты, причем колбу охлаждают водой. Образовавшиеся слои разделяют и эфирный слой промывают 50 мл 10%-ной соляной кислоты. Соединенные кислые растворы концентрируют до тех пор, пока при температуре паровой бани и давлении 20 мм не прекратится перегонка. Остаток растворяют в 200 мл воды, полученный раствор охлаждают и медленно прибавляют ПО г гранулированного едкого натра, причем в это время смесь перемешивают и снаружи охлаждают льдом. Образовавшиеся два слоя разделяют и водную фазу экстрагируют тремя порциями эфира по 100 мл (примечание 6). Слой амина и эфирные [c.17]


Смотреть страницы где упоминается термин Соединения алюмогидридом натрия: [c.388]    [c.319]    [c.237]    [c.349]    [c.281]    [c.445]    [c.526]    [c.528]    [c.181]    [c.186]    [c.176]    [c.356]    [c.321]    [c.167]    [c.109]    [c.118]    [c.223]    [c.224]    [c.483]    [c.108]   
Комплексные гидриды в органической химии (1971) -- [ c.277 ]




ПОИСК





Смотрите так же термины и статьи:

Натрий соединения



© 2024 chem21.info Реклама на сайте