Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Горные щелочных металлов

    Формула 02 белое кристаллическое вещество, встречающееся также в виде хорошо выраженных бесцветных кристаллов (горный хрусталь, кварц) обладает высокой твердостью устойчив к действию большинства кислот реагирует с гидроксидами щелочных металлов с образованием силикатов и воды. [c.153]

    Из горных пород, руд и кварцитов, в которых золото и серебро находятся в состоянии высокого распыления, а также из колчеданных огарков, золото и серебро извлекают выщелачиванием цианидами щелочных металлов.  [c.235]


    Щелочные металлы легко окисляются, поэтому в природе могут находиться только в виде соединений, главным образом солей хлоридов, сульфатов, карбонатов, нитратов, горных пород силикатного типа. Наиболее распространены натрий и калий, содержание каждого из них в литосфере составляет приблизительно 2,6% (мае.), тогда как на долю остальных щелочных металлов, вместе взятых, приходится около 0,014% (мае,). [c.286]

    Щелочные материалы горные породы 4/561 мыла 3/301-304 4/670 удобрения 2/870 3/172, 173 целлюлоза 2/634 5/664, 999 Щелочные металлы 5/797 определение 2/507 получение 5/798 [c.753]

    Остающийся расплав, т. е. часть магмы с более низкой температурой кристаллизации, нередко проникает в трещины и образует в них жилы. Эти образования богаты кремнием, алюминием и щелочными металлами, а наряду с ними часто содержат значительные количества менее распространенных элементов, таких, как Li, Ве, Мо, Sn и и. К счастью,, эти месторождения бывают расположены на ограниченном пространстве, что делает возможным их извлечение путем горных разработок. Многие промышленно важные руды являются продуктом окончательных стадий кристаллизации магмы. [c.445]

    При определении серы в горных породах в присутствии хрома пробу разлагают обычно сплавлением с содой и селитрой или спеканием со смесью соды и окиси цинка, как указано выше. Однако при выщелачивании сплава или спека в водную вытяжку переходит также и хром в виде хромата щелочного металла. Хромат восстанавливают до Сг(1И) и связывают его в ацетатный комплекс [c.193]

    Метод дуги переменного тока использован для определения галлия в солях редких щелочных металлов [502], фосфиде бора [22], свинце [161], сере [505, 507], в рудах и концентратах алюминия, цинка, свинца и меди [125, 185, 1362], бокситах [185], золе углей [185], силикатах [130, 872, 873] и других горных породах 1333], в сернистых (материалах [1333], глинах [1272, 1334], угольном порошке [1286], в олове высокой чистоты [558], металлическом индии [909], г( рючих сланцах [942], двуокиси кремния и кварце [206], селене [506, 508] и в кадмии высокой чистоты (156  [c.159]

    Платиновые чашки чаш е применяются емкостью 100 и 300 мл. Последние можно с успехом заменить чашками емкостью 500 и 1000 мл. Маленькие чашки применяются для прокаливания й взвешивания в них небольших остатков Г например солей щелочных металлов при определении их в горных породах большие чашки нужны при точном определении кремнекислоты. Для первых крышки не нужны, для вторых желательно иметь крышки, сделанные из тонкой листовой платины и укрепленные по краям платиновой проволокой. [c.54]


    Второй метод После безуспешных попыток применить суш еству-юш,ие методы для определения редких поблочных металлов в горных породах и минералах был разработан следуюш ий метод Исходным продуктом является смесь хлоридов, полученная в результате предшествующей обработки по методу Лоуренса Смита (стр. 1006). Методы разделения основаны главным образом на применении платинохлористоводородной кислоты, абсолютного спирта, эфира и сульфата аммония. Каждый щелочной металл взвешивают раздельно, и таким образом начальная масса смеси хлоридов служит только для контроля.,  [c.742]

    Петрографы, со своей стороны, должны добиваться того, чтобы нужные им анализы проводились насколько возможно полно, а не довольствовались бы, как это часто случается, определениями кремнекислоты, окиси алюминия, окислов железа, кальция, магния, щелочных металлов и воды. Такие сокращенные анализы, правда, имеют иногда свои основания, так как их, несомненно, можно использовать для некоторых целей. Однако при таких неполных анализах не только может остаться незамеченным многое, что представляло бы большую ценность для исследователя, но, что еще важнее, могут быть сделаны совершенно неверные заключения. Нам пришлось наблюдать достаточное число примеров таких неверных заключений, и мы имеем веские основания настаивать на большей полноте анализов горных пород и минералов, проводимых с чисто научной целью [c.877]

    Только когда горная порода не содержит фтора, хлора, серы, углерода, СО2 и нелетучих окисляющихся (FeO) или восстанавливающихся (МпОг) компонентов, потеря при прокаливании может считаться истинной мерой содержания воды. Однако редко бывает, чтобы проба удовлетворяла этим условиям, особенно в отношении отсутствия железа (И). Если проба содержит из указанных выше веществ только СО2, то можно, установив точно содержание последней, правильно определить содержание воды прокаливанием пробы при 1100—1200° С нри этом должно соблюдаться условие, что Og происходит от карбонатов щелочноземельных металлов, а не от карбонатов железа и марганца. Другим источником ошибок является то, что водород из некоторых минералов не может быть удален полностью даже при прокаливании на паяльной горелке, а между тем высокая температура может вызвать улетучивание других компонентов горной породы, которые при более низкой температуре не улетучиваются, например щелочных металлов. В частности, это происходит при анализе [c.907]

    Солянокислый фильтрат выпаривают досуха и разрушают аммонийные соли выпариванием с несколькими каплями раствора карбоната натрия. Избыток карбоната разлагают и выпавшую двуокись марганца переводят в раствор добавлением соляной кислоты и одной капли сернистой кислоты. После удаления выпариванием соляной кислоты осаждают марганец карбонатом натрия в кипящем растворе. Если присутствует цинк, его можно отделить от марганца после взвешивания осадка. Для тех малых количеств марганца, с которыми обычно имеют дело, способ осаждения карбонатом натрия следует предпочесть методам осаждения бромом и фосфатом натрия как более быстрый и одинаково точный. При определении малых количеств марганца, которые обычно присутствуют в горных породах, ошибкой, вызванной адсорбцией щелочных металлов выпадающим осадком, можно пренебречь. [c.961]

    В практике анализа осадочных горных пород иногда приходится определять так называемую растворимую (аморфную) кремнекислоту. Метод ее определения основан на сравнительно легкой растворимости как искусственно приготовленного геля кремневой кислоты, так и кремнекислоты минералов группы опала в растворах едких щелочей и карбонатов щелочных металлов. [c.1037]

    Щелочные металлы в природе. Получение и свойства щелочных металлов. Вследствие очень легкой окисляемости щелочные металлы встречаются в природе исключительно в виде соединений. Натрий и калнй принадлежат к распространенным элементам содержание каждого из них в земной коре равно приблизительно 2% (масс.). Оба металла входят в состав различных минералов и горных пород силикатного типа. Хлорид натрия содержится в морской воде, а также образует мощные отложения каменной соли во многих местах земного шара. В верхних слоях этих отложений иногда содержатся довольно значительные количества калия, преимущественно в виде хлорида илн двойных солей с натрием и магнием. Однако большие скопления солей калия, имеющие промышленное значение, встречаются редко. Наиболее важными из них являются соликамские месторождения в СССР, стассфуртские в ГДР и эльзасские — во Франции. Залежи натриевой селитры находятся в Чили. В воде многих озер содержится сода. Наконец, огромные количества сульфата натрия находятся в заливе Кара-Богаз-Гол Каспийского моря, где эта соль в зимние месяцы толстым слое.м осаждается на дне. [c.562]


    В технике применяют различные средства для предотвращения выдувания грузов при перевозках, а также для связывания пыли в горных работах, шахтах, рудниках, содержащие в своем составе соли щелочных металлов Са,Ка, Mg , различных кислот (соляной, серной и т. д.). Используются также различные органические составы. Известен способ [287] предотвращения выдувания сыпучих материалов путем нанесения на их поверхность состава, включающего полимерное связующее - кубовый остаток ректификации стирола и эмульгатор - натриевые сопи жирных кислот или поливиниловый спирт и воду. Имеется предложение [288]покрывать поверхность сыпучего материала водной суспензией, содержащей сульфат капьция, которая образует корку на поверхности материала. [c.265]

    Неразлагаемые кислотами материалы (многие природные минералы, горные породы, глины, а также технические силикаты) переводят в раствор сплавлением с содой или ииросульфатом. При сплавлении с содой образуются богатые щелочными металлами и разлагаемые кислотой силикаты натрия. Такие элементы, как железо и алюминий, образуют ферриты и алюминаты, например NaFeO,, NaAlOj. Затем сплав разлагают соляной кислотой и полученный раствор выпаривают досуха. При этом выделяе тся нерастворимая кремниевая кислота  [c.155]

    Нахождение в природе. В природе щелочные металлы в свободном виде не встречаются. Натрий и калий входят в состав различных минералов и горных пород — силикатов. Наиболее важным является соединение натрия с хлором, которое образует залежи каменной соли (Донбасс, Соликамск, Соль-Илецк и др.). Na l содержится в морской воде и соляных источниках. Большие количества сульфата натрия находятся в заливе Кара-Богаз-Гол Каспийского моря. [c.292]

    Литий Li (лат. lithium, от греч. lithos — камень). Л. — элемент I группы 2-гс периода периодич. системы Д. И. Менделеева, п. н. 3, атомная масса 6,939. Л. был открыт в 1817 г. Достаточно широко распространен в природе (горные породы, минеральные источники, морская вода, каменный уголь, почвы, животные и растительные организмы). Л.—серебристо-белый, самый легкий металл, принадлежит к щелочным металлам. В соединениях Л. проявляет степень окисления Ь1. На воздухе тускнеет вследствие образования оксида LiaO и нитрида Li ,N. С водой реагирует менее энергично, чем другие щелочные металлы. Гидроксид Л. является сильным основанием. Л. окрашивает пламя в карминово-красный цвет. Получают Li электролизом хлорида лнтия. Л. Li имеет большое значение для ядерной энергетики его изотоп применяется для получения трития Ы -р 0 = Н -Ь jHe. Л. используют для изготовления регулирующих стержней в атомных реакторах, как теплоноситель в урановых реакторах. Л. применяют в черной и цветной металлургии, в химии (литийорганические соединения). Соединения Л. применяются Б силикатной промышленности и др. [c.77]

    Навеску 5—10 мг минерала или горной породы помещают в платиновый тигель вместимостью 4—5 мл, смачивают 2 каплями дистиллированной воды и затем прибавляют 2 мл 40%-ной HF. Тигель помещают на водяную баню и накрывают крышкой. Через 10 мин крышку снимают, обмывают водой и затем упаривают содержимое тигля досуха, снова добавляют 2 мл HF и упаривают. Остаток сиачивают 2 каплями НС1 (пл. 1,12) и нагревают 1—2 мин, после чего прибавляют 2 мл насыщенного на холоду раствора щавелевой кислоты (свободной от примеси щелочных металлов), которая должна покрывать все частицы, приставшие к стенкам тигля. [c.57]

    Интересный црнмер сплавов — амальгамы (сплавы ртути с другими металлами). В зависимости от состава амальгамы могут быть при комнатной температуре твердыми или жидкими. Амальгамы щелочных металлов ведут себя во многих отношениях подобно свободным щелочным металлам, например реагируют с водой, образуя водород и раствор щелочи, но реакция идет менее бурно. Поэтому амальгамы щелочных металлов удобно применять в качестве восстановителей. Золото и серебро легко и быстро растворяются в ртути, это используется в так называемом амальгамном способе извлечения этих металлов из горных пород. [c.169]

    Описываемый метод может быть применен для определения калия в силикатах. Как известно, при анализе силикатов и различных горных пород определение щелочных металлов проводится путем суммарного их выделения в виде хлоридов с последующим определением калия хлороплатинатным или кобальтинитратным методом. Первый из этих методов неудобен из-за высокой стоимости реактива, второй — длителен и недостаточно точен. [c.228]

    Цезий встречается в крайне рассеянном состоянии (порядка тысячных долей процента) во многих горных породах ничтожные количества этого металла были обнаружены и в морской воде. В большей концентрации (до нескольких десятых процента) он содержится в некоторых калиевых и литиевых минералах, главным образом в лепидолите. Но особенно существенно то, что, в отличие от рубидия и большинства других редких элементов, цезий образует собственные минералы — поллуцит, авогадрит и родицит. Родицит крайне редок, притом некоторые авторы причисляют его к литиевым минералам, так как в его состав (КгО ЗАЬОз ЗВ2О3, где КгО — сумма окисей щелочных металлов) входит обычно больше лития, чем цезия. Авогадрит (К, Се) [ВР4] тоже редок, да и пол-луциты встречаются нечасто их залежи маломощны, зато цезия они содержат не менее 20, а иногда и до 35%. Наибольшее практическое значение имеют ноллуциты США (Южная Дакота и Мэн), Юго-Западной Африки, Швеции и Советского Союза (Казахстан и др.). [c.92]

    МИНЕРАЛЬНАЯ ВАТА (франц. mineral — рудный) — вата из расплавленных металлургических шлаков или горных пород. Шлаковая вата впервые получена (1840) в Уэльсе, ее про.м. произ-во организовано в 1864. М. в. состоит гл. обр. из двуокаса кремния, окислов алюминия, кальция и магния, в ней могут быть также окислы железа, марганца, щелочных металлов и других хим. элементов, а также сера в виде сульфидов, сульфатов и сульфатов. В зависимости от объемной массы и содержания корольков М. в. подразделяют на три марки (табл.). Для проиЗ Ва ваты используют лег- [c.827]

    Сикативы получаются обработкой сырых или омыляющихся продуктов окисления парафинов или горного воска окисям и или солями щелочных металлов или алюминия, цинка, марганца и свинца при этом образуются нераствори мые или только частично растворимые в воде продукты . Эти вещества могут быть употреблены или сами по себе или в смеси с солями высокомолекулярных кислот естественного происхождения, как например с резинатами, линолеатами, стеаратами. [c.1069]

    Купфероновый метод вполне надежен для определения железа, титана, циркония, ванадия и в отдельных случаях — олова, ниобия, тантала, урана (IV), галлия и, вероятно, гафния. Этим методом можно определять также медь и торий, но осаждать их следует из слабокислых растворов результаты определения этих элементов менее удовлетворительны, чем при обычно принятых методах. Из числа элементов, мешающих применению кунферонового метода, следует упомянуть таллий (III), сурьму (III), палладий, ниобий, тантал, молибден, висмут, церий, торий, вольфрам и большие количества кремния, фосфора, щелочноземельных и щелочных металлов Торий и церий частично выделяются купфероном даже из растворов, содержащих 40% (по объему) серной кислоты. Уран (VI) не влияет на осаждение купфероном. Число элементов, мешающих определению купфероном, может показаться очень значительным, но нужно принять во внимание, что часть из них относится к группе сероводорода и может быть легко отделена перед осаждением купфероном, а некоторые элементы встречаются редко. Здесь следует указать на представляющие интерес разделения, которые можно осуществить этим методом, а именно 1) отделение железа, титана, циркония, галлия и ванадия при анализе чистых алюминия, никеля, цинка и т. п. 2) отделение осаждающихся купфероном элементов от алюминия, хрома, магния и фосфора при анализе различных руд и горных пород 3) отделение ванадия (V) от урана (VI), разделение урана (IV) и урана (VI) и отделение ванадия от фосфора. Осажденяе купфероном может быть осуществлено в присутствии винной кислоты, что дает возможность предварительно отделять железо в виде сульфида. Для этого в раствор вводят достаточное количество винной кислоты, чтобы он оставался прозрачным нри последующем добавлении аммиака. В кислом растворе восстанавливают железо сероводородом и затем подщелачивают аммиаком. Выделившийся осадок сульфида железа отфильтровывают, как описано нри осаждении сульфидом аммония (стр. 115), фильтрат подкисляют серной кислотой, удаляют сероводород кипячением и после этого проводят осаждение купфероном. [c.144]

    Осаждение в щелочном растворе. Описанный ниже метод отделения кальция от магния и щелочных металлов применим всегда, за исключением тех случаев, когда магния значительно больше, чем кальция, или кальций присутствует в очень малых количествах. Анализ большинства горных пород и силикатных минералов может быть проведен способом, описанным в данном разделе. Как уже было указано выше, для точного определения необходимо но крайней мере двукратное осаждение кальция. Оптимальное количество хлорида аммония в растворе неопределенно, потому что большой излишек его уменьшает соосаждение магния и бария, но, с другой стороны, замедляет осаждение кальция и особенно стронция. Если анализ проводится обычным способом, то нет необходимости удалять церед осаждением аммонийные соли. Если же в резул >тате проведения каких-либо дополнительных операций в растворе скопилось большое количество аммонийных солей, то их надо удалить, как указано на стр. 161, или же выпариванием досуха подкисленного раствора в фарфоровой или платиновой посуде и дальнейшим осторожным прокаливанием так, чтобы поступающее тепло равномерно распределялось по внешней поверхности чашки и не вызывало слишком сильного выделения дыма. После этого смачивают остаток хлоридов или нитратов 2—3 мл соответствующей кислоты, растворяют соли добавлением небольшого количества воды и, если надо, фильтруют. [c.705]

    При изложении анализа горных пород, в разделе о щелочных металлах (стр. 1004 сл.), описан способ получения хлоридов щелочных металлов, свободных от всех прочих элементов, за исключением быть может незначительных количеств магния. Ни один из, известных методов, по-види-мому, не обеспечивает полного отделения магния. Небольшие количества магния, которые обычно переходят в фильтрат совместно с щелочными металлами и взвешиваются в виде хлорида, можно затем определить и вычесть массу их из общей массы хлоридов . [c.730]

    В присутствии лития определение можно провести и методом с к-бути-ловым спиртом и этилацетатом (стр. 734) Aih одним из методов, изложенных в разделе Определение лития , (стр. 737). Хлороплатинатный метод применяется для онределения последовательными операциями калия (рубидия и цезия), натрия и лития. Методы, изложенные в разделе Определеннее литня , предназначаются в первую очередь для выделения лития и, если требуется, последующего определения сопровождающих его других щелочных металлов. Рубидий и цезий редко встречаются в горных породах Если они содер атся в анализируемой породе, то попадают в осадок, содержаший калий, выделенный по одному из указанных выше методов. Их определяют методом, изложенным в разделе Определение рубидия и цезия (стр. 740). Наконец, в разделе Определение одного калия (стр. 744) приведены наиболее распространенные методы определения этого элемента. [c.731]

    Определение натри (лития). Известно лишь очень немного минералов и, пожалуй, ни одной горной породы, в состав, которых из щелочных металлов входил бы один только натрий. Содержание натрия обычно вычисляют по разности после определения суммы всех щелочных металлов и остальных элементов всей группы. В тех случаях, когда желательно проверить получеНныё вычислением результаты содержания натрия, его можно определить в фильтрате после отделения хлороплатината калия. Для этого из фильтрата сначала удаляют платину, что можно осуществить несколькими способами, из которых метод Бунзена наиболее прост и надежен. -  [c.733]

    Одним из преимуществ, которые имеют эти реактивы (а также и борная кислота) по сравнению с карбонатами щелочных металлов, является легкость удаления после выполнения ими своего назначения. Они допускают, таким образом, более совершенное выделение различных компонентов пробы, не вызывая осложнений, связанных с присутствием нескольких граммов посторонних нелетучих солей, которые особенно мешают при выделении кремния, алюминия, железа, кальция и магния. Другим преимуществом этих плавней является то, что при сплавлении с ними можно в одной и той же навеске анализируемой пробы определить, кроме крегипе-кислоты и обычно определяемых оснований, также и щелочные металлы. Если количество имеющехгся для анализа пробы ограничено, как это часто бывает при анализе минералов, это является очень важным преимуществом, могущим превысить все отрицательные стороны этих плавней. Однако нри анализе горных пород, где материала для анализа обычно бывает достаточно, применение таких плавней редко оправдывается. Еще одним преимуществом этих плавней является легкость получении их в чистом виде, не содержащими загрязнений по сравнению с карбонатами щелочных металлов. [c.916]

    Гидроокиси щелочных металлов. Гидроокиси натрия и калия являются энергичными плавнями, но редко применяются в полном анализе горных пород, потому что даже лучшие продажные препараты едких щелочей не так чисты, как карбонат и бикарбонат натрия кроме того, для сплавления с едкими щелочами приходится применять серебряные и золотые тигли вместо платиновых тигли из этих металлов не допускают применения таких высоких температур, при которых проводят снлавления в платиновой посуде хотя золотые и серебряные тигли разрушаются меньше, чем платиновые, все же значительное количество металла переходит в плав и должно быть затем удалено. [c.918]

    Можно было бы предположить, что в остатке будет содержаться большая часть бария при анализе тех пород, в которых этот элемент присутствует вместе с сульфидами или сульфатами. Однако это не так, потому что сульфат бария заметно растворим в горячей соляной кислоте, и в большинстве горных пород барий встречается лишь в очень незначительных количествах. Если часть BaSOi присутствует в остатке, то его выделение и определение в этой стадии анализа не является необходимым, так как его гораздо лучше определять позже вместе с кремнекислотой, сопровождающей осадок окисей алюминия и т. п. (стр. 954). Если в самом начале разложение породы было полным, кальций очень редко входит в состав этого остатка. Когда анализ проводится надлежащим образом, остаток после растворения его затем количественно осаждается аммиаком в присутствии аммонийной соли. Этот факт, а также специальные исследования, произведенные одним жз нас (В. Ф. Гиллебранд), опровергают утверждение некоторых, что остаток может содержать кальций, магний и щелочные металлы. Магний находили случайно, но количество его не превышало 0,3 мг MgO. Утверждение, что присутствие хлорида натрия является одной из причин наблюдаемых иногда небольших потерь в массе при прокаливании кремнекислоты, опровергается нашими исследованиями, а также наблюдениями других авторов Противоположные результаты опытов, проведенных некоторыми исследователями следует, вероятно, приписать неполному разложению породы при сплавлении ее с карбонатами щелочных металлов. [c.946]

    Ошибки, происходящие от присутствия сульфатов щелочных металлов, можно также избеягать, если определять титан в другой навеске горной породы, а не в той, которая указана в предыдущем разделе. Это определение может быть соединено с определением бария разложением порошка породы серной и фтористоводородной кислотами последнюю удаляют повторным выпариванием с серной кислотой, остаток растворяют в разбавленной серной кислоте, отфильтровывают сульфат бария и т. д. и в фильтрате] определяют титан колориметрически. [c.966]

    К числу сравнительно немногих силикатов, разлагаемых этим способом не полностью, можно отнести андалузит, топаз и некоторые разновидности турмалина. Шпинель, графит и пирит, которые находятся в некоторых горных породах, также трудно разлагаются, но они не являются силикатами и не содержат щелочных металлов, поэтому их присутствием можно пренебречь, если они будут обнаружены. Для анализа первых трех упомянутых выше минералов Яннаш рекомендует сильно прокалить порошок минерала в платиновом тигле, разложить его сплавлением с фторидом аммония, удалить избыток последнего прокаливанием и превратить фториды в сульфаты нагреванием с серной кислотой [c.1011]

    Тироксин выполняет функцию гормона, а именно он является регулятором ассимиляции и дезассимиляции. Отсутствие йода в пище детей приводит к ослаблению физических и умственных способностей (кретинизм) и к патологическому росту щитовидной железы (зоб). Эти симптомы исчезают при введении йода. Наилучший способ введения йода в организмы людей, живущих в бедных йодом районах, какими являются некоторые горные районы, состоит в употреблении в пищу поваренной соли, содержащей очень малые количества йодидов щелочных металлов. [c.400]


Смотреть страницы где упоминается термин Горные щелочных металлов: [c.148]    [c.107]    [c.108]    [c.129]    [c.129]    [c.41]    [c.250]    [c.119]    [c.93]    [c.250]    [c.400]    [c.713]    [c.889]    [c.921]    [c.132]    [c.186]   
Методы аналитической химии Часть 2 (0) -- [ c.0 ]

Методы аналитической химии - количественный анализ неорганических соединений (1965) -- [ c.643 ]




ПОИСК





Смотрите так же термины и статьи:

Горный



© 2025 chem21.info Реклама на сайте