Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Каустическая сода свойства

    Синтетические жидкие моющие средства можно приготовлять также на основе алкиларилсульфонатов. Натриевые соли алкиларилсульфонатов недостаточно растворимы в воде, чтобы давать концентрированные прозрачные растворы. Если применить для нейтрализации алкилбензолсульфокислоты этаноламины или аммиак с целью полной или частичной замены каустической соды, то можно получить жидкие моющие средства с различными свойствами. [c.149]


    Основным сырьем при производстве хлора и каустической соды служит поваренная соль. В небольших масштабах используется I также хлористый калий. Ниже приведены некоторые наиболее важные физико-химические свойства поваренной соли и хлористого калия  [c.197]

    Для придания раствору необходимых реологических свойств, а также для других целей, рассматриваемых ниже, используются другие органические коллоиды. Они в основном представляют собой полимеры с длинными цепями, т. е. состоят из образующих длинную цепь элементарных ячеек, подобных показанной на рис. 4.28 ячейке целлюлозы. Такие цепи могут иметь длину несколько сот нанометров, поэтому по длине они сравнимы с шириной небольших глинистых -пластинок. Такие полимеры как карбоксиметилцеллюлоза (КМЦ) (рис. 4.29) и сополимер акриламида и акрилата (рис. 4.30), называют полиэлектролитами, поскольку в некоторых или во всех ячейках функциональные группы (например, карбоксильные радикалы) замещены и гидролизованы каустической содой. В результате диссоциации иона натрия в цепи появляются участки с отрицательными зарядами. Взаимное отталкивание зарядов заставляет беспорядочно свернутые цепи вытягиваться в прямую линию. Диссоциацию подавляют растворимыми солями, в частности многовалентными, благодаря чему цепи вновь свертываются. Поскольку заряды отрицательны, эти полиэлектролиты относятся к классу анионных. Они могут адсорбироваться только на положительно заряженных участках ребер глинистых частиц. [c.165]

    Физические свойства каустической соды (едкого натра) [c.16]

    Графитированные аноды используют в качестве электродов при электролизе водных растворов в производстве, например, хлора, каустической соды. Основными требованиями здесь являются максимальная электропроводность и минимальный удельный расход анодов, влияющий на чистоту конечного продукта. Свойства материалов, используемых в качестве анодов, даны в табл. 48. Габаритные размеры (по ГОСТ 11256—65) анодов марки А толщина 45-50, ширина 40-50, длина 1000-1100 мм. [c.256]

    Некоторое улучшение свойств раствора было достигнуто путем добавления каустической соды и квебрахо к пресной воде с бентонитом. Значительно более высокая стабильность в минерализованной среде и меньшая фильтрация достигаются добавлением феррохромлигносульфоната к распущенному в пресной воде бентониту при этом концентрации феррохромлигносульфоната и каустической соды в пресной воде составляют 8,6 и [c.458]


    При описании процессов сокращенно излагаются свойства продуктов (кроме производств хлора и каустической соды, водорода и кислорода), так как с ними учащиеся подробно знакомились в курсе Общая химия . [c.3]

    Опасность для персонала в производстве хлора, водорода и каустической соды определяется высокой токсичностью хлора и ртути, возможностью образования в аппаратуре взрывоопасных газовых смесей хлора и водорода, водорода и воздуха, а также растворов треххлористого азота в жидком хлоре, применением в производстве электролизеров — аппаратов, находящихся под повышенным электрическим потенциалом относительно земли, свойствами едкой щелочи, вырабатываемой в этом производстве. [c.133]

    При обращении с ингибированными крекинг-бензинами и при хранении их следует избегать контакта с растворами каустической соды из-за растворимости ингибиторов (преимущественно фенолов или производных ф нолов) в щелочах, образующих феноляты. Кроме того, некоторые ингибиторы легко окисляются в присутствии щелочи. Следует упомянуть также, что многие ингибиторы хорошо растворимы в воде, которая может частично экстрагировать ингибитор, растворенный в бензине. При прочих равных условиях растворимые в масле и нерастворимые в воде ингибиторы имеют преимущество над инги биторами с обратными свойствами. [c.325]

    Следует высказать некоторые предостережения в отнощении высокопрочных (предел прочности на растяжение792,9—896,3МПа), закаленных с последующим отпуском сталей. Высокие прочностные свойства их позволяют сооружать емкости с более тонкими стенками. Однако такие стали имеют минимальное относительное удлинение при разрыве менее 16%, т. е. меньше того минимума, который установлен для тонкозернистых (мелкодисперсных) марок стали Европейскими правилами международных перевозок опасных грузов . Это указывает на повышенную чувствительность таких сталей на разрыв при изломе или после ударных воздействий. Кроме того, при их использовании необходимы повышенное внимание к технологии сварки и более трудоемкая процедура контроля сварных швов в процессе эксплуатации. Такие стали в большей степени подвержены коррозии, особенно при воздействии на них аммиака, каустической соды или сернистых соединений. По этим причинам в некоторых странах оговорены условия применения высокопрочных сталей для хранения СНГ. Вполне вероятно, что применение сталей этих типов может быть запрещено в новом варианте Европейских правил международных перевозок опасных грузов . [c.176]

    V зависят от свойств молекулы, подвергаемой диализу. Фактор извилистости h меняется в зависимости от направления и формы капилляров мембраны. Совершенно не обязательно, чтобы Этот фактор оставался одним и тем же у мембран, изготовленных из одинакового материала, если толщина их разная. Подвергаемая диализу молекула, например молекула каустической соды, влияет как на толщину мембраны в набухшем состоянии, так и на извилистость пор. При проведении опытов по определению требуемых свойств мембраны общий коэффициент переноса в пленках Ui существенно уменьшают путем интенсивного перемешивания или принимают согласно уравнению (IX-60). [c.626]

    СВОЙСТВА и ПРИМЕНЕНИЕ ХЛОРА, КАУСТИЧЕСКОЙ СОДЫ [c.6]

    Химические свойства и применение каустической соды [c.21]

    Происхождение известковых растворов неясно. Как особая система известковый буровой раствор, по-видимому, появился в результате наблюдений за улучшением свойств красных буровых растворов после разбуривания цемента или ангидрита. Хотя Роджерс приписывает вероятное происхождение известкового раствора разбуриванию ангидритов в восточной части шт. Техас в 1943 г., Кэннон приводит свидетельство об умышленном добавлении цемента к красному буровому раствору на побережье шт. Луизиана в 1938 г. Независимо от происхождения совершенствование известкового раствора от скважины к скважине привело к его широкому применению на всем побережье Мексиканского залива и разработке методов регулирования свойств путем изменения массовых долей извести, каустической соды, понизителя вязкости и добавок, регулирующих фильтрацию. Позднее лигносульфонат кальция и лигнит (бурый уголь, леонардит) в основном заменили квебрахо в качестве понизителя вязкости, а натриевой карбоксиметилцеллюлозе (обычно называемой КМЦ) было отдано предпочтение перед крахмалом в качестве добавки, регулирующей фильтрацию. [c.62]

    В настоящее время электрохимический метод является основным в производстве хлора и каустической соды. Он основан на свойстве водных растворов хлористых солей щелочных металлов — поваренной соли или хлористого калия — разлагаться под действием постоянного тока с образованием газообразного хлора, раствора едкой щелочи и газообразного водорода. [c.32]


    Когда необходимые свойства бурового раствора невозможно обеспечить с помощью коллоидных глин, в него добавляют органические коллоиды. Например, для регулирования фильтрационных свойств буровых растворов на минерализованной воде в них добавляют крахмал, который сохраняет устойчивость при концентрациях хлорида натрия вплоть до насыщения, в то время как глины флокулируют. Крахмал в холодной воде не растворяется. Он образует гель и разбухает при температурах выше 70 °С или при гидролизации с применением каустической соды. Для нефтедобывающей промышленности поставляется заранее гидролизованный крахмал. [c.165]

    Химические свойства рассолов во многом определяются концентрацией входящих в их состав солей. В высококонцентрированных рассолах могут растворяться нерастворимые в воде материалы. Например, в рассолах с высоким содержанием бромида цинка в растворенном состоянии находится гидроокись цинка, которая выпадает в осадок при разбавлении рассолов водой. Каустическая сода и цемент вступают в нежелательные реакции с тяжелыми рассолами. Гашеная известь в них растворяется, а карбонаты кальция и хлориды натрия выпадают в осадок. [c.128]

    Из долго хранившейся копры масло несъедобно вследствие резкого запаха и неприятного вкуса. В большом количестве оно применяется в мыловарении, особенно для выработки туалетногО мыла. Изготовленное из кокосового масла мыло белого цвета, дает обильную крупнозернистую, но неустойчивую пену. Кроме того, такое мыло имеет повышенную твердость, хорошую растворимость даже в холодной воде и хорошие пластические свойства, облегчающие механическую обработку его при изготовлении. Кокосовое масло принадлежит к клеевым жирам. Оно способно омы-ляться на холоду крепким раствором каустической соды. [c.137]

    Получение натриевых смазок. Натриевые смазки (консталины) являются менее распространенной группой мыльных смазок, чем кальциевые. Они обеспечивают работоспособность узлов трения в более широком температурном диапазоне, чем гидратированные кальциевые смазки. Отличительной особенностью натриевых смазок является растворимость в воде, поэтому их невозможно использовать в условиях повышенной влажности. Натриевые смазки (так же как и солидолы) готовят на природном и синтетическом жировом сырье. В качестве природного жирового сырья в большинстве случаев используют касторовое масло, а также широкую фракцию СЖК, получаемую окислением парафина. Жировой компонент омыляют водным раствором каустической соды (35—40% NaOH). Существенное значение имеет дозировка комнонентов, поскольку даже незначительное отклонение от количественного соотношения заметно изменяет структуру и свойства смазок. Расход каустической соды определяют по числу омылегшя жирового компонента. [c.259]

    На качество глинистого раствора влияет химический состав солей, растворенных в воде. Поэтому не всякая вода годится для приготовления хорошего ГЛИН1ЮТ0Г0 раствора. Кроме того, свойства раствора при бурении могут весьма ухудшиться при проходке вследствие растворения солей, содержащихся в породах, и попадания в скважину минерализованных подземных вод. Для повышения качества глинистого раствора в глиномешалку добавляют некоторые реагенты, чтобы уменьшить водоотдачу раствора. К числу таких реагентов относятся продукты обработки бурового угля или торфа каустической содой, сульфит-щелочная барда, которая является побочным продуктом при производстве спирта из целлюлозы, кальцинированная сода и другие. [c.106]

    Нержавеющий (аустенитный) чугун благодаря однофазной структуре обладает высокой химической стойкостью во многих агрессивных средах. Так, он обладает повыщениой стойкостью (в 5—10 раз по сравнепию с серым обычным чугуном) в серной, муравьиной, уксусной кислотах, в каустической соде, в ряде щелочных сред, в морской воде, однако менее стоек в соляной и быстро разрушается в азотной кислоте. Аустенитный чугун также достаточно прочен, износоустойчив, обладает хорошими технологическими свойствами. [c.137]

    Аподы из плавленого магнетита широко применяли в производстве хлора, каустической соды и хлоратов. Впоследствии магнетитовые аноды были вытеснены графитовыми, однако их долго еще использовали в производстве хлората калия. Помимо недостаточной стойкости, магнетитовые аноды по своим механическим свойствам непригодны для конструирования сложных форы электродов, они имеют низкую электропроводность, в работе подвергаются рас-троскивапию. Сведения об использовании анодов из литого искусственного магнетита в производстве хлора, хлоратов и некоторых других производствах приведены в литературе [17, 18]. [c.224]

    Ряд патентов, не раскрывая химизма процесса, указывает на возможность ускорения окисления сырья и улучшения свойств битума. Так, для получения битума, имеющего более высокую пенетрацию при данной температуре размягчения, применяют следующие катализаторы и инициаторы окисления сырья кислородом воздуха двуокись марганца [488] хлорид алюминия [463] двуокись марганца и азотную кислоту [437] мелкораздробленный известняк [528] каустическую соду или углекислый натрий [348] бентонит или мелкоизмельченный кокс [315] серу [293] серную кислоту с добавлением металлических солей серной или борной кислот [388] металлические фторобораты [361] борную, фосфорную или мышьяковистую кислоты [406] пятиокнсь фосфора и его сульфиды (РгЗз, Р45з, Р45 ) [492] смесь пятиокиси фосфора и сополимеров изобутилена и стирола, смесь орто-фосфорной кислоты и борофтористого соединения [270] хлорат калия [479] хлорид или сульфат цинка, алюминия, железа, меди или сурьмы [306] хлорид цинка или [c.157]

    В 30-е годы самым популярным понизителем вязкости для буровых растворов был экстракт квебрахо. Этот растительный таинин, получаемый из коры одного из южноамериканских деревьев с твердой древесиной, приобретает темно-красный цвет при взаимодействии с раствором каустической соды. При значительных массовых долях каустической соды и квебрахо получали растворы с высоким pH, которые обладали некоторыми благоприятными свойствами для разбуривания глинистых сланцев в частности, низким предельным статическим напряжением сдвига и высокой устойчивостью к твердой фазе, образующейся при разбуривании сланцев. От красного цвета растворов с высоким pH пошли красноизвестковые или известковые растворы, которые на протяжении многих лет (с 1943 по 1957 г.) оставались наиболее популярными буровыми растворами в районе северного побережья Мексиканского залива. Улучшенные их композиции применяются там до настоящего времени. [c.62]

    В книге подробно рассмотрен подход к выбору материалов для электродов. Кратко изложены физпко-химпческие, электрохимические и коррозионные свойства электродных материалов. Оппсаны способы изготовления электродов, псиользуемых в основных электрохимических производствах (получение хлора, каустической соды, хлоратов, перхлоратов, перекпсп водорода, электролиз воды, соляной кислоты II морской воды) приведены эксплуатационные характеристики электродов. Основное внимание уделено анодам с активным слоем из двуокпси рутения, платиновым и платцнотитаиовым анодам, а также электродам, полученным ири нанесении на титановую основу окислов неблагородных металлов (свинца, марганца, железа и др.). Рассмотрено в.лпяние выбора материала и конструкции анодов на электрохимические показатели электрохимических производств. [c.2]

    Едкий натр, каустическая сода, кйустик. Белый, гигроскопичный, плавится и кипит без разложения. Хорошо растворяется в воде (с высоким экзоэффектом), создает в растворе сильнощелочную среду. Сильно снижает растворимость многих солей натрия в воде. Не растворяется в жидком аммиаке. Проявляет свойства оснбвных гидроксидов (относится к щелочам) нейтрализуется кислотами, реагирует с кислотными оксидами. Поглощает СО2 из воздуха. Реагирует с неметаллами, металлами, амфотерными оксидами и гидроксидами. Получение см. 23 , 25 , 29 , 36 . [c.20]

    Хлорная промышленность вьшускает обширный ассортимент продуктов с самыми разнообразными свойствами и использует много различных технологических приемов предприятия хлорной промышленности обычно объединяют комплекс из большого числа сложных и разнообразных производств. Поэтому при строительстве крупного хлорного комбината на базе использовакия нефтехимического сырья стоимость цехов, непосредственно относяш ихся к производству хлора и каустической соды, обычно не превышает 10—15% общей суммы затрат на строительство такого комбината. [c.13]

    Советскими исследователями было показано, что выход по току, напряжение электролиза и чистота получаемой каустической соды определяются такими свойствами мембраны, как влагоем-кость, набухаемость, обменная емкость, толщина, и условиями [c.117]

    По роду щелочи, применяемой для омыления м<иров, различают мыла натриевые и калиевые. Наибольшее количество сортов мыла вырабатывают при помощи натруев1,1х щелочей, главным образом, едкого натра, или каустической соды. Применение для этой цели едкой извести недопустимо, так как получаемое известковое мыло, хотя и твердо, но нерастворимо в воде и моющими свойствами не обладает. [c.3]

    Уменьшить агрессивные свойства воды можно также с помощью хроматов. Концентрация хро1мата или бихромата зависит от состава охлаждающих или передающих энергию жидкостей и их температуры. Для обыкновенной водопроводной воды добавка 0,2—0,5% хромата вполне достаточна для прекращения коррозии стали при комнатной температуре. При большом содержании в воде хлоридо В (от 100 до 1000 мг/л) концентрация хромата должна быть повышена до 2—5%. Хромат, обладающий более щелочными свойствами, имеет преимущество перед бихроматом. При необходимости применять бихромат целесообразно электролит подщелачивать до рН = 8-+9, добавляя каустическую соду. Для воды с высоким значением pH можно применять бихромат без дополнительного подщелачивания. С повышением температуры электролита защитные свойства хромата и бихромата значительно понижаются. При температурах 80—90°С концентрация хромата или бихромата в обычной водопроводной воде должна быть повышена до 1—2%. [c.261]

    Химические свойства атомарного водорода Вуда были более полно исследованы Бонгеффером в 1924 г. Как показано на рис, 12, чистый водород, полученный при электролизе каустической соды и просушенный пропусканием через ловушку, погруженную в жидкий воздух, проходит через капиллярную трубку С, попадает в длинную разрядную трубку АВ и откачивается с помощью мощного ртутного насоса в широкую реакционную трубку и ловушку Т. Необходимо, чтобы выходная трубка К была помещена на достаточно большом расстоянии от электродов, так как поверхности электродов катализируют рекомбинацию. Создавая между цилиндрическими алюминиевыми электродами медленный разряд при разности потенциалов в 10 000 вольт и пропуская одновременно через АВ струю водорода с давлением от 0,1 до 1 мм, можно получить в химически активный продукт, который на расстоянии до 10 см от места [c.94]

    Образование солей при взаимодействии алюминия как с кислотами, так и со щелочами свидетельствует об его амфотерности. Свойство алюминия растворяться в едких щелочах следует принимать во внимание при пользовании в домашнем быту алюминиевыми изделиями. Не рекомендуется хранить в алюминиевой посуде астворы каустической соды, насыщенные мыльные растворы нельзя кипятить белье в алюминиевых тазах, наполненных раст-Еором каустическоГг соды. [c.162]

    В стекловарении стронций используют для получения специальных оптических стекол он повышает химическую и термическую устойчивость стекла и показатели преломления. Так, стекло, содержащее 9 % 5гО, обладает высоким сопротивлением истиранию и большой эластичностью, легко поддастся механической обработке (кручению, переработке в пряжу и ткани). В нашей стране разработана технология получения стронцийсодержащего стекла без бора. Такое стекло обладает высокой химической стойкостью, прочностью и электрофизическими свойствами. Установлена способность стронциевых стекол поглощать рентгеновское излучение трубок цветных телевизоров, а также улучшать радиационную стойкость. Фторид стронция используют для производства лазеров и оптической керамики. Гидроксид стронция применяют в нефтяной промышленности для производства смазочных масел с повышенным сопротивлением окислению, а в пищевой — для обработки отходов сахарного производства с целью дополнительного извлечения сахара. Соединения стронция входят также в состав эмалей, глазурей и керамики Их широко используют в химической промышленное ги в качестве наполнителей резииы, стабилизаторов пластмасс, а также для очистки каустической соды от железа и марганца, в качестве катализаторов в органическом синтезе и при крекинге нефти и т. д. [c.114]

    Краткий обзор состава и свойств катализаторов — отверди-телей для мочевиноформальдегидных смол приводит Стивенс [293]. В качестве таких катализаторов могут быть использованы вещества как кислого, так и основного характера кислоты — адипиновая, бензойная, линолевая [292], малеиновая [294], соляная, фосфорная [2951, щавелевая [296], салициловая и ее производные [297] ангидриды — фосфорный [298], сернистый [299], фталевый, малеиновый, янтарный [292] кислые соли [284, 285] щелочные агенты щелочные соли [282], каустическая сода [300], ЫН4РОз [301], амины [593], смесь водорастворимых солей моноэтаноламина и диэтаноламина [3021 соли незамещенных ацилгуанилмочевины или ацилкарбамилгуанидина [303] и другие [304]. [c.113]

    Структурообразование нефти можно осуществлять натриевыми мылами жирных или нафтеновых кислот [3.32]. При этом ТЖ включает, % (по объему) безводной дегазированной нефти-95, смеси гудронов растительных и животных масел (или СМАД-1)-4 и каустической соды — до 1,0. Компоненты совмещают на поверхности, и смесь неоднократно прокачивают через скважину, подготовленную к ремонту. Повышенная температура на забое скважины и постоянное движение жидкости обеспечивают равномерное распределение компонентов в ее объеме и омыление кислот в течение 2 — 3 циклов циркуляции раствора. Технологические свойства жидкости при этом плотность — 940 — 960 кг/м , условная вязкость — 70- 75 с, СНС — 1,0 — 2,072,0 — 3,0 дПа, фильтрация — 6 — 8 мл/30 мин. Однако термостойкость такой системы (раствора) не превышает 70 °С. [c.213]

    Существенным достижением является создание и широкое практическое применение диафрагм, обладающих ионообменными свойствами. Ионитовые мембраны получают все большее распространение в производстве хлора и каустической соды, электрохимическом синтезе неорганических и органических веществ, электроднализе и других процессах. [c.6]

    Водород соединяется с хлором одинаковым образом в эвдиометре Гей-Люссака при установлении им закона объемных. отношений, и в специальных печах на заводах каустической соды, заинтересованных в утилизации хлора и водорода как отходов производства, я в школьных опытах горения водорода в хлоре следовательно, положение хлор соединяется с водородом, образуя хлористый водород , является исти-вой. Но это — истина лишь относительная. В иных условиях температуры и давления, например в условиях солнечной атмосферы, водород и хлор сосуществуют, не соединяясь друг с другом. Более того, при высоких температурах вступает в сиду диаметрально противоположная истина хлористый водород разлагается на водород и хлор. Разложение хлористого водорода под влиянием высокой температурь на водород и хлор впервые наблюдал Кавендиш, подвергая хлористый водород действию электрических искр в присутствии ртути. В то время как хлористый водород сам по себе на ртуть не действует, при опыте Кавендиша получалась Hg ls, очевидно, в результате взаимодействия ртути с освобождающимся из хлористого водорода хлором. Таким образом, реакция синтета хлористого водорода обладает общим свойством подавляющего божшинства реакций неорганической химии она обратима. [c.234]

    Еще древним египтянам было известно, что щелочные свойства соды резко усиливаются при обработке ее гашеной известью. Продукт этой реакции с алхимических времен получил название каустической соды (от греческого олова каустикос — жгучий) за свою необычайную едкость. Это название за техническим едким натром настолько упрочилось, что сохраняется и сейчас. Алхимикам каустическая сода была известна, однако лишь в виде ее водных растворов, В кристаллическом виде — в виде кристаллогидрата — она была впервые выделена основоположником учения о кристал лизации веществ из растворов — преемником М. В. Ломоносова, русским академиком Ловицем. [c.456]


Смотреть страницы где упоминается термин Каустическая сода свойства: [c.239]    [c.307]    [c.19]    [c.69]    [c.7]    [c.701]    [c.84]   
Технология содопродуктов (1972) -- [ c.15 , c.16 , c.199 , c.298 , c.302 , c.324 ]




ПОИСК





Смотрите так же термины и статьи:

Каустическая сода

Общие сведения Свойства и применение хлора, каустической соды и водорода В Физические свойства хлора

Свойства хлора, каустической соды и водорода

Сода свойства

Сода сода

Физические свойства каустической соды (едкого натра) lti Химические свойства и применение каустической соды



© 2025 chem21.info Реклама на сайте