Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Форма атомов ванны

    Для образования химической связи, бериллию нужны неспаренные электроны, иначе он был бы так же химически неактивен, как и гелий. Если один из 25-электронов перейдет (промотируется) на 2р-орби-таль, то у атома появятся два неспаренных электрона. Для промотиро-вания электрона атому необходима энергия его характеризуют как возбужденный ( ) атом. Теперь бериллий образует связи не с помощью орбиталей двух разных типов, происходящих от простых 5-и р-орбиталей, а с помощью двух одинаковых гибридных орбиталей. При образовании молекулы электронные плотности атомных 5- и р-орбиталей смешиваются и получаются гибридные 5р-орбитали, форма которых показана на рис. 5.9. [c.112]


    Если в конформации кресла атом С , вращая вокруг ординарных связей, перевести на ту же сторону плоскости С —С —С — —С , где находится атом то будет получена другая конформация циклогексана-форма ванны При этом изменится положение атомов водорода при С С и С находившиеся ранее в аксиальном положении (2, 3 и И) перейдут в экваториальное и наоборот [c.32]

    Кристалл сольвата с пиперидином кислого тетракис-бен-зоилацетоната гадолиния Н0 (ВА)4-Л Р1р содержит [250] переменное количество молекул пиперидина на воздухе пиперидин теряется, однако, при этом разрушения кристаллов не происходит. Было предположено, что структура содержит пиперидиний-катион, который после отщепления протона с передачей его атому О лиганда выветривается. Детальный анализ структуры кристалла обнаружил присутствие трех статистически не упорядоченных молекул пиперидина в каналах сечением 7Х9А. При этом возможно, что молекулы пиперидина находятся в кристалле в трех формах кресла, ванны и с гош-конформацией. В совокупности с отсутствием водородных связей это указывает, что вещество является кислотой Н 0(1(ВА)4-.> Р1 р и содержит не ионы, а молекулы пиперидина. [c.162]

    Присоединение в трис-НС1 (pH 8,3) протекает со средней скоростью, но в итоге гель содержит столько же бора, сколько и в случае проведения конденсации в NaOH или фосфатном буфере. Следовательно, сам трис не реагирует с активированным гелем. Это может быть, кроме того, продемонстрировано отсутствием реакции после 18-часовой инкубации активированного геля в 2,0 М трисе при pH 10,0 и 60 X. На геле до и после обработки иммобилизуются равные количества алифатического диамина, и общее содержание азота в геле не меняется после инкубации. Было обнаружено, что родственное соединение, 2-амино-2-метил-1,3 Пропандиол, также не реагирует с триазинактивиро-ванными гелями. Структурные модели этих двух соединений указывают на то, что в наиболее стабильной форме атом азота стерически экранируется гидроксиметильными группами, которые могут сильно уменьшать его нуклеофильность. Для демонстрации этого факта можно показать, что ни один из этих двух аминов не реагирует с нингидрином с образованием синего продукта. По этим причинам вполне вероятно, что трис в равной степени не будет реагировать и с другими активированными матрицами различных типов и, таким образом, без всяких проблем может быть использован в буферах для присоединения лигандов. В действительности широко распространено мнение о нежелательности использования триса в растворах для присоединения лигандов, и очень часто трис рекомендуется в качестве удобного реагента для блокирования остающихся после иммобилизации лиганда активных групп. [c.172]


    На расстояниях, меньших, чем сумма ван-дер-ваальсовых радиусов взаимодействующих молекул, между последними возможно образование слабых химических связей. Различие между сильными и слабыми химическими связями в основном количественные, а именно энергия образования слабых связей на 1—2 порядка ниже энергии образования ковалентной связи. Одной из основных форм слабых взаимодействий являются водородные связи, обозначаемые X—Н... , где X — атом, имеющий сильную химическую связь с водородом, а V — практически любой атом. Различают внутреннюю водородную связь, действующую между атомами одной молекулы (их наличием объясняются конформационные переходы в молекулах н-алканов от шахматной к затененной конформации [27]), и межмолеку-лярную водородную связь. Связь X—Н главным образом ковалентная, но вследствие связывания Н...У указанная связь ослабляется, в результате чего несколько увеличивается расстояние X—Н. Характерным признаком водородной связи служит уменьшение расстояния Н...У по сравнению с суммой нан-дер-ваальсовых радиусов. Водородная связь строго направлена и ненасыщаема. По энергии образования ( обр) и расстоянию между атомами водородные связи делятся на три вида [17]  [c.18]

    Из электронных спектров рассеяния, спектров Рамана и инфракрасных спектров, а также на основании те)).модинамическнх измерений был сделан вывод, что при комнатной температуре циклогексан существует главным образом в форме кресла. В газообразном состоянии форма кресла частично переходит в форму ванны, энергия которой приблизительно на 5,6 кал1моль выше. Для этого достаточно повернуться только половине молекулы, так что в качестве промежуточной ступени образуется не планарная, а такая конфигурация, при которой лишь пять С-атомов лежат в одной плоскости, а шестой атом остается вне этой плоскости, на своем прежнем месте (форма кровати ). В зависимости от того, как циклогексановое кольцо замещено и связано с другими кольцевыми системами, стабильной является та или иная его конфигурация. [c.797]

    Важность применения понятия фазы к твердому состоянию заключается в том, что, как правило (за исключением молекулярных кристаллов), носителем всех свойств твердого вещества является фаза. В жидком и газообразном состояниях, а также в молекулярных кристаллах носитель химических свойств — молекула, хотя представление о фазе к ним приложимо. В связи с этим твердая фаза представляет собой высшую ступень химической организации вещества. Рассмотрим взаимосвязь и характерные особенности различных форм организации вещества на примерах иода, кремния и диоксида кремния (рис. 86). Изолированный атом не является конкретным носителем химических свойств вещества в обычных условиях, а у SiOa (сложное вещество) организация на атомном уровне отсутствует вообще. Для иода первичным носителем химических свойств выступает молекула. При образовании молекулярного кристалла Ь, в котором молекулы связаны слабыми ван-дер-ваальсовыми силами, возникающая твердая фаза не будет специфическим носителем свойств иода, так как последние целиком определяются [c.185]

    Графит — устойчивая при нормальных условиях аллотропная форма углерода. Он имеет серо-черный цвет и металлический блеск, кажется жирным на ощупь, очень мягок, оставляет черные следы на бумаге. Графит хорошо проводит теплоту и электрический ток, но его свойства резко анизотропны. Кристаллохимическое строение графита существенно отличается от структуры алмаза. Он имеет гексагональную структуру (рис. 144). Атомы углерода в графите расположены отдельными слоями, образованными из плоских шестиугольников. Каждый атом углерода на плоскости окружен тремя соседями ( р -гибридизация), расположенными вокруг него в виде правильного треугольника на расстоянии 0,412 нм. А расстояние между ближайшими атомами соседних слоев равно 0,340 нм и более чем в два раза превышает кратчайшее расстояние м ду атомами углерода в плоском слое. Поэтому графит имеет меньшую плотность по сравнению с алмазом, легко расщепляется на тонкие чешуйки. Химическая связь между атомами углерода внутри слоя имеет ковалентный характер с ярко выраженной склонностью к металлизации. Последняя обусловлена возникновением делокализованных 5Гр.р-связей в пределах шестиугольников (как в молекуле бензола) и всего макрослоя. Этим и объясняются хорошая электрическая проводимость и металлический блеск графита. Углеродные атомы различных слоев связаны слабыми силами Ван-дер-Ваальса. Преимущественно ковалентная связь между атомами углерода внутри слоя сближает графит с алмазом и тот и другой необычайно тугоплавки и обладают малой упругостью паров при нагревании. [c.359]


    При промышленном использовании радиационных процессов облучение нефтяного сырья тепловыми нейтронами может вызвать трудности, связанные с наведенной или искусственной радиоактивностью. Эта важная сторона радиационных технологических процессов будет рассмотрена дальше. Обычные формы остаточной радиации сильно осложняют последующее эффективное использование получаемых продуктов. Для достижения максимальной эффективности поступающее излучение должно в минимальной степени поглощаться стенками реактора и в максимальной — перерабатываемым сырьем. Применительно к парофазным реакциям в системах высокого давления электромагнитное излучение удовлетворяет первому из этих требований, но не удовлетворяет второму. Для излучения в виде элементарных частиц справедливо обратное положение поглощение стенками аппаратуры настолько интенсивно, что возникает необходимость к разработке специальных конструкций. На рис. 1 представлена специальная установка, сконструированная в исследовательском центре фирмы Эссо , для облучения газов под высоким давлением (до 70 ат) непрерывно обегающим пучком электронов, получаемым в электростатическом генераторе Ван-де-Граафа. Особенностью этой камеры является устройство непрерывно охлаждаемого окошка, оборудованного специальной решеткой, отверстия которой расположены под критическими углами для достижения максимальной проникающей способности движущегося йлектронного пучка. [c.115]

    Объемные модели, правильно передающие размеры и форму молекул, были разработаны в 1934 Г. Стюартом и позднее усовершенствованы Г. Бриглебом (рис., а, б). Каждый фрагмент, изображающий атом определенного элемента, в моделях Стюарта представляет собой шаровой сегмент, причем радиус шара пропорционален эффективному радиусу атома (Гзфф), а расстояние от центра шара до плоскости среза-ковалентному радиусу (/ , ,). В случае многовалентных атомов делают соответствующее число срезов, причем угол а между перпендикулярами из центра шара на плоскость среза равен валентному (рис., в). По предложению Г. Бриглеба для атомов, соединенных кратными связями, сегменты изготовляют не из шаров, а из эллипсоидов, большая полуось к-рых соответствует эффективному радиусу, обусловленному наличием л-электронного, а малая-а-электронного облака. Модели изготовляют обычно из пластмассы, окрашенной в цвета, установленные для каждого элемента (С-черный, Н-белый, О-красный, М-синий, 8-желтый и т.д.). При сборке моделей сегменты соединяют между собой по плоскостям срезов, причем в случае простых связей сегменты могут вращаться один относительно другого. Модели Стюарта-Бриглеба верно передают валентные утлы, межатомные расстояния и эффективные радиусы они позволяют измерять расстояния между разл. атомами и группами (0,1 нм соответствует 1,5 см). Эффективные радиусы, принятые в моделях Стюарта-Бриглеба, на 10-15%. меньше ван-дер-ваальсовых радиусов, получаемых из кристаллографич. данных. Это связано с тем, что модели предназначены для рассмотрения стерич. эффектов в молекуле, находящейся при обычных условиях, а не при т-ре абс. нуля. [c.118]

    Проходной агрегат предназначен для патентирования проволоки из стали У8А диаметром д = 3 мм [4]. Процесс патентирования заключается в нагреве проволоки до /д = 920 °С, выдержке ее в течение Ат = 6 с и быстром охлаждении (изотермической закалке) в ванне с определенной температурой. Опыты показали, что нужную скорость охлаждения можно получить, используя в качестве охлаждающей среды КС корунда с размером частиц = 100 мкм. Поскольку ванна охлаждения сообщается с камерой нагрева, в последней в качестве промежуточного теплоносителя используем тот же корунд. Нагрев должен быть безокислительным. Камера нагрева имеет в плане форму, изображенную на рис. 4.12, и предназначена для 24-х ниток проволоки, протягиваемых непрерывно в продольном направлении. Природный газ сжигают в первой зоне при в = 1,15. Во второй зоне для получения безокислительной среды организуется двухступенчатое сжигание газовоздушная смесь с в = 0,4, подаваемая через колпачки, сгорает в кассетах с катализатором, затопленным КС, обогревает проволоку, движущуюся над кассетами, и догорает над сло м с подаваемым в зону всплесков вторичным воздухом. Выделяющаяся при этом теплота транспортируется в зону нагрева проволоки интенсивно циркулирующими частицами. Скорость проволоки определяется конструкцией намоточно-размоточного устройства и составляет гi дeт = 0,2 м/с. В качестве топлива используется природный газ Бухарского месторождения с низшей теплотой сгорания в сухом состоянии = 36,4 МДж/м Состав газа Ссщ = 95,66 % Сс Нв = СзНв = 0.19 = 2 = 0-04% С ,= 1.0 0/о Ссо = 0.2%. [c.208]

    Предшествующий Pro остаток, находясь в R-форме, имеет высокую энергию из-за перекрывания ван-дер-ваальсовых радиусов атомов Н собственной метиленовой группы пролинового цикла. Для этого остатка наиболее предпочтительна форма В, а затем L. Поэтому дипептидный участок Arg -Pro у аналога [Рго ]-АТ II может обладать только развернутым шейпом е. Следовательно, реализация шести из 14 низкоэнергетических конформаций АТ II с R-формой Arg и /-шейпом дипептида Arg -Pro становится у синтетического аналога маловероятной. Предпочтительными остаются лишь структуры Aj и A4 с относительной энергией О и 4,5 ккал/моль. Энергия остальных превышает 10,0 ккал/моль. [c.574]

    Стереохимия восьмичленных циклов более сложна такой цикл обладает большей гибкостью, и поэтому различные конфигурации обнаруживаются и в полиморфных модификациях (например, кресло и ванна. М4Р4С18), и в близких ио составу солях (см. тетраметафосфаты, разд. 19.6.14), и даже в одном кристалле, как это наблюдается в случае [ (СНз) 2SiNH] 4. Нетрудно построить модели четырех форм восьмичленного цикла, образованного ато.мами с тетраэдрическими связями (эти атомы нумеруются последовательно по ходу цикла). [c.123]

    Два белка, миоглобин и гемоглобин, играют дополняющую друг друга роль в транспорте и фиксации кислорода. Миоглобин (МЬ) состоит из одной полипептидной цепи, примерно на 78 % спирализованной, и содержит 153 аминокислотных остатка и одну гемовую группу (13). Гемоглобин НЬА содержит четыре полипептидные цепн две а (141 аминокислота) и две р (146 аминокислот), каждая из которых ассоциирована с гемом. Ре(II) обычно гекса-координирован в оксигенированных формах гемопротеинов пятое и щестое координационные места заняты О2 и атомом азота имидазольного кольца (Н1з-93 в МЬ, Н1з-87 в НЬа и Н1з-92 в НЬр). Атом Ре(П) диамагнитен и лежит в плоскости порфиринового кольца. В дезоксигемоглобине, однако, Ре(II) пентакоординиро-ван, парамагнитен и выступает из плоскости порфиринового кольца в направлении атома азота имидазола. Как будет видно из после- [c.556]

    Структуры простых веществ неметаллических элементов и их соединений обычно являются гетеродесмическими. Характеризовать межатомные расстояния в таких структурах приходится по крайней мере двумя величинами — ковалентными и Ван-дер-Ваальсовыми радиусами . Термин радиус в геометрическом смысле не может быть оправдан для ковалентной связи и употребляется лишь по аналогиж с металлическими или ионными радиусами. Под этим термином подразумевается та доля в межатомном расстоянии, которая приходится на тот или иной элемент, атомы которого связаны ковалентными связями с другими атомами. Сам Же атом в этом случае теряет форму шара. [c.354]

    Так, при реакции моносахаридов с гидроксиламииом получаются смеси оксимов циклических и ациклических форм. При действии на них уксусного ангидрида одновременно происходят ацетилиро-вание и дегидратация с образованием нитрила альдоновой кислоты. Обработка полученного нитрила метилатом натрия приводит к дезацетилированию и отщеплению молекулы синильной кислоты. Таким путем углеродная цепь альдозы укорачивается на один атом [c.451]

    При синтезе полиамида периодическим способом расплавленная масса полимера выдавливается сжатым азотом через щелевидное отверстие автоклава под давлением 6—8 ат в ванну с холодной водой. Затвердевший в виде ленты полимер наматывают на мотовила, затем измельчают в крошку—на кусочки размером 4—5 мм. Крошка полимеров, применяемых в производстве волокон анид, и энант, поступает непосредственно на формование волокна. В крошке поликапроамида содержится незаполимеризовавшийся мономер, который удаляют путем экстракции горячей водой. Перед формованием волокна капрон крошку сушат до содержания влаги менее 0,1%. Полиамиды образуют вязкие расплавы, из которых можно получать изделия любой формы, в том числе формовать полиамидные волокна. [c.471]

    Подход, использованный при исследовании нейтральной устойчивости по отношению к осциллирующим возмзпцениям, аналогичен подходу, примененному Лукассеном и Ван ден Темплем [31-411. Анализ при этом такой же, что и в первом разделе, но он ограничен случаем, когда продольные и кашшшрные волны не связаны меаду собой. Подробное исследование [24 было выполнено для возмущений с большими длинами волн. В нем в уравнениях баланса массы в объемных фазах учитывалась конвекция. В атом случае комплексный модуль упругости, связанный с диффузионным переносом растворимого поверхностно-активного вещества, принимает более общую форму. [c.58]

    Силы Ван-дер-Ваальса имеют ненаправленный характер, вследствие чего молекулы располагаются по возможности тесно. Именно поэтому благородные газыЫе, Аг, Кг,. .., представляющие собой в этом отношении крайний случай, кристаллизуются по способу наиболее плотной упаковки шаров. В такой плотной кубической упаковке каждый атом имеет двенадцать ближайших соседей. Аналогичная упаковка осуществляется в кристаллах НС1, НВг, НгЗ, СН4 в большинстве подобных систем при температурах, не слишком далеких от точки плавления, отдельные молекулы могут вращаться. Если, как в случае бензола, форма молекулы весьма отличается от сферической, упаковка все же такова, что у каж,той отдельной молекулы имеется максимально возможное число соседей. Рис. 11.2 погазывает, как [c.324]

    Для этой цели изучалась реакция метильного радикала с отдельными тритированными формами толуола, содержащими атом трития в метильной группе, а также при атомах углерода в орто-, мета- и пара-положениях по отношению к метильной группе. Константа в уравнении (201) относится к реакции радикала со всеми С—Н-связями нетритиро-ванных молекул. Поэтому в случае реакции метильного радикала с тритированными формами толуола эта константа не зависит от положения трития в толуоле и при определении отношения констант скорости реакции отрыва атомов трития от атомов углерода в различных положениях она может быть сокращена  [c.262]

    Хотя делать заключения на основании столь малых различий представляется занятием опасным, особенно если принять во внимание ошибки эксперимента, меньшее значение АО -тв для гетероцикла может найти объяснение с привлечением данных по внутренним барьерам вращения в аналогичных ациклических соединениях [14]. Барьер конформационных взаимопереходов в циклогексане является преимущественно результатом торсионного напряжения в переходном состоянии (5), имеющем конформацию полукресла, где имеет место заслоненное расположение около связи С-2,С-3, а торсионные углы у связей С-1,С-2 и С-3,С-4 малы. Напротив, торсионные углы у связи С-5,С-6 близки к 60°. Замещение б-СНз-группы на 0-атом оказывает лишь малое влияние на величину энтальпии образования формы полукресла, однако в случае замещения на 0-атом 2-СН2-группы (или, в меньшей степени, 1-СНг-группы) наблюдается сильный эффект. Так, барьер инверсии кольца в тетрагидропиране может быть существенно понижен по сравнению с циклогексаном, особенно в случае переходного состояния (6). Сходный подход показал, что барьер инверсии для 1,4-диоксана примерно на 3,8 кДж-моль ниже, чем для циклогексана, причем интересно отметить, что спектроскопия Н-ЯМР при изменяющейся температуре дает значение свободной энергии активации взаимопревращения кресло — искаженная ван-триоксане инверсия цикла протекает с очень большой скоростью на (твыст-конформация), равное 39,3 кДж-моль [15]. В 1,3,5,  [c.368]


Смотреть страницы где упоминается термин Форма атомов ванны: [c.1800]    [c.639]    [c.490]    [c.177]    [c.639]    [c.71]    [c.123]    [c.265]    [c.92]    [c.1079]    [c.67]    [c.643]    [c.401]    [c.78]    [c.67]    [c.233]    [c.254]    [c.323]    [c.323]    [c.67]    [c.643]    [c.401]    [c.46]    [c.320]    [c.787]    [c.82]    [c.93]    [c.75]   
История стереохимии органических соединений (1966) -- [ c.106 , c.125 ]




ПОИСК





Смотрите так же термины и статьи:

Атомы форма

Ванны форма



© 2025 chem21.info Реклама на сайте