Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Разделение биохимические

    Тот факт, что а-аминокислоты суть составляющие белков, придает им особое значение. Восемь аминокислот называют незаменимыми , потому что млекопитающие не могут их синтезировать и должны получать вместе с пищей. Это изолейцин, лейцин, лизин, метионин, валин, треонин, фенилаланин и триптофан. Они все обладают ь-конфигурацией, и располагать способом получения таких аминокислот весьма важно. Десять лет назад с этой целью использовали в основном биохимические методы, основанные на разделении рацемических смесей. [c.93]


    В настоящее время существует множество вариантов как метода Максама — Гилберта, так и метода Сэнгера. Главное, эти методы удалось полностью автоматизировать. Так, например, при секвенировании ДНК по Сэнгеру на 5 -конец праймера вводят флуоресцентные метки, причем для каждого из четырех анализируемых нуклеотидов используются флуоресцирующие агенты с различными спектральными характеристиками. После электрофоретического разделения гель сканируется при четырех различных длинах волн и полученная информация сразу обрабатывается на ЭВМ. При этом все биохимические операции также проводятся роботом. [c.19]

    Многократная противоточная периодическая фракционная экстракция. Это—процесс с двумя растворителями, часто используемый для разделения биохимических и подобных им веществ. Процесс проводится в делительных воронках по схеме, показанной на рис. 5, или, что более удобно, в аппарате Крейга . Этот аппарат состоит из ряда камер, устроенных, как показано на рис. 6. Каждая камера наполняется двумя чистыми растворителями так, что поверхность раздела сов- [c.23]

    В специализированной области хроматографического разделения биохимических веществ накопление получаемых данных, без сомнения, будет постоянно продолжаться, что должно привести к более детальной картине адсорбции на кремнеземе веществ с высокими молекулярными массами. Серьезную проблему, однако, представляет собой денатурация белков, когда скрученные в спирали и связанные водородными связями белковые конфигурации разрываются под действием сил, стремящихся распрямить молекулы вдоль поверхности. С целью определения молекулярных размеров полимерных молекул методом эксклюзивной хроматографии кремнезем следует сформировать в виде совершенных структур с регулируемым размером пор [443]. Однако при таком использовании адсорбции полимеров на поверхности кремнезема необходимо избегать некоторых нежелательных моментов, и, кроме того, еще нет полностью удовлетворительного способа, пригодного для модифицирования поверхности, чтобы сделать ее инертной по отношению ко всем адсорбционным силам. [c.981]

    Возможность определения молекулярных весов полимеров обусловливает применимость гель-хроматографии для разделений в биохимических исследованиях [16], например при исследовании ферментов и гормональных препаратов, при выяснении структуры протеинов, в химии нуклеиновых кислот, при разделении вирусов и т. д. [c.351]

    Биохимическое разделение. Биохимические (ферментативные) методы разделения рацематов аминокислот основаны на том, что определенные ферменты строго специфично катализируют превращение только одного антипода. Для расщепления аминокислот применяются главным образом три биохимических процесса асимметрическое окисление или декарбоксилирование, асимметрический синтез, асимметрический гидролиз. [c.59]


    Асимметрическая индукция, деструкция или методика кинетического разделения Биохимическое разделение (применение ферментов)  [c.258]

    Разделение продуктов химических реакций. Возможность осуществления высокопроизводительных непрерывных ультрафильтрационных процессов разделения веществ с сильно различающимися размерами молекул чрезвычайно важна для проведения химического, нефтехимического и биохимического синтеза. [c.280]

    Одной из важнейших областей применения молекулярного анализа является медицина и биология. Он используется для установления структуры молекул, контроля предварительного разделения биохимических веществ, количественного и качественного их анализа. Помимо абсорбционного и эмиссионного методов в биологии и медицине все большую роль играет люминесцентный анализ в виде микрофлуоресцентной спектроскопии. В ближайшее время роль спектроскопии в биологии, несомненно резко возрастает в связи с важнейшей задачей изучения строения клетки. Абсорбционные методы, особенно в ультрафиолетовой области, примененные для исследования процессов в микрообъемах, позволят решить многие нерешенные вопросы, связанные с делением, ростом, дифференцированием клеток, нормальными и патологическими процессами в них. [c.112]

    Значительно реже, чем ТСХ, используется в нефтяном анализе хроматография на бумаге. Имеются лишь редкие сообщения о ее использовании для разделения нефтяных кислот, аминов, аминокислот, фенолов и других полярных веществ [157, 158], хотя в исс.тедованиях биохимических объектов этот метод приносит неоценимую пользу. [c.20]

    Химическое производство представляет собой иерархическую структуру по горизонтали подготовка сырья, химическое превращение и выделение продуктов. Каждая из стадий может содержать произвольное количество разнородных процессов, отличающихся природой определяющих явлений, а именно а) гидродинамические процессы перемещение жидкостей и газов в аппаратах и трубопроводах получение и разделение неоднородных систем газ - жидкость (туманы), газ - твердое вещество (пыли), жидкость - твердое вещество (суспензии), жидкость -жидкость (эмульсии) б) тепловые процессы кипение, испарение и конденсацию, выпаривание в) диффузионные процессы экстракцию, абсорбцию, адсорбцию, кристаллизацию, мембранные, ректификацию и т. д. г) химические процессы химические превращения в реакторах д) биохимические процессы биохимические превращения в реакторах, аэротенках и т. д.  [c.15]

    Дан анализ биохимического производства, рассматриваемого с позиций системного подхода как сложная иерархическая система (БТС) с целым рядом взаимосвязанных подсистем и элементов, обеспечивающих преобразование материальных и энергетических потоков в процессе переработки исходного сырья в целевые продукты микробиологического синтеза. Рассмотрены вопросы выбора глобального и локальных критериев эффективности, а также применения принципов многоуровневой оптимизации при анализе БТС и ее подсистем. Приведены примеры построения математических моделей типовых технологических элементов, составляющих БТС, даны алгоритмы их расчета на ЭВМ и методы анализа надежности функционирования в системе. Детально исследованы условия функционирования основных подсистем БТС ферментации , разделения биосуспензий , биоочистки , рассмотрены принципы их структурного анализа и оптимизации. Рассмотрена иерархическая структура управления биохимическими системами и показана эффективность использования управления на основе ЭВМ в задачах оптимизации процессов биохимических производств. [c.2]

    Биохимические методы очистки основаны на способности некоторых микроорганизмов разрушать органические вещества до двуокиси углерода, воды и других неорганических безвредных или менее вредных для жизни водоема соединений. Биологическая очистка осуществляется в специальных устройствах — аэротенках, представляющих собой длинные железобетонные резервуары, разделенные на несколько параллельных секций (чтобы можно было выключить одну из них для очистки и ремонта), по которым медленно протекает сточная вода вместе с так называемым активным илом, заселенным бактериями, грибками и другими микроорганизмами, часть которых способна разрушать органические вещества. [c.264]

    Крупные дорогостоящие экстракционные батареи применяют для разделения нескольких компонентов с близкими значениями к (например, при проведении биохимических или клинических анализов). [c.341]

    Биохимические процессы. В некоторых живых организмах содержатся хиральные соединения, которые могут реагировать с каждым из энантиомеров с различной скоростью. Например, есть бактерии, усваивающие только один из двух энантиомеров. Применимость биохимического разделения ограничена необходимостью найти подходящий организм, а также тем, что один из энантиомеров разрушается в ходе процесса, однако благодаря исключительной стереоселективности этот метод обеспечивает очень высокую степень разделения. [c.160]


    Кроме этого метода разделения Пастер открыл также метод превращения в диастереомеры с разделением их дробной кристаллизацией и метод биохимического разделения. [c.205]

    Эффективность работы биохимического производства, характеризуемого многоуровневой иерархической схемой связей элементов и явлений различной природы, определяется не только успешным функционированием отдельных стадий и технологических аппаратов производства, но и слаженной, взаимосвязанной работой всех его подсистем и элементов. Применение методологии системного анализа позволяет систематизировать и подчинить единой цели все технологические процессы. При этом исследования биохимической системы в целом основываются на анализе процессов и явлений, протекающих на всех ее иерархических уровнях. Разделение системы на иерархические уровни, соответствующие блокам общей математической модели, позволяет, проведя детальный анализ нижних уровней, обобщить информацию при передаче ее на верхние уровни и выявить основные факторы, влияющие на глобальный критерий оптимальности системы. Рассмотренная в работе иерархическая схема БТС включает шесть основных уровней от процессов на микроуровне, связанных с внутрнклеточиыми превращениями и эффектами переноса энергии, массы в элементарном объеме технологического аппарата, до процессов функционирования отдельных агрегатов и подсистем. [c.5]

    Распределительная хроматография быстро получила широкое распространение как метод разделения органических соединений, главным образом в биохимических исследованиях. В неорганическом анализе этот метод применялся значительно реже. Распределительная хроматография неорганических веществ развивалась вначале в основном как хроматография на бумаге, но последняя обладает некоторыми недостатками. Распределительная хроматография на колонках имеет большое значение для экспрессных методов неорганического анализа, для радиохимии, для препаративных целей. [c.150]

    Хроматографию особенно щироко применяют в биохимических анализах, например для разделения аминокислот и пептидов, алкалоидов, стероидов, различных экстрактов из природных продуктов. Преимуществом ее является то, что для анализа достаточно очень небольшого количества вещества (порядка нескольких микрограммов). [c.113]

    Условия функционирования узла следующие. В биореактор поступают потоки питательной среды /.], нейтрализующего агента 2 и культуральной жидкости L (после сепарационного разделения последний содержит определенное количество клеток микроорганизмов). В отводимом из сепаратора потоке Ц находятся концентрированная биомасса микроорганизмов и некоторое количество неутилизированной питательной среды (субстрата). Поток суспензии микроорганизмов из биореактора в сепаратор обозначим з. Биореактор имеет систему охлаждения II, обеспечивающую поддержание заданной температуры процесса ферментации в условиях выделения тепла при реакции биосинтеза. Суспензия микроорганизмов при сепарации дополнительно подогревается. Биореактор представлен в виде трех операторов — I — смешение , II — теплообмен , III — биохимический синтез , а сепаратор в виде двух операторов — IV — теплообмен и V — разделение . [c.19]

    Отказ первого вида заключается в снижении производительности системы ниже заданной. Отказ второго вида соответствует событию, заключающемуся в полном прекращении выпуска продукции, т. е. в выходе системы из строя. Отказ первого вида наступает при выходе из строя любого технологического оператора (элемента БТС). Отказы второго вида вызывают либо отказ одного из следующих технологических операторов (оператора смешения /, оператора биохимического превращения 3 и оператора разделения б), либо одновременный отказ группы параллельно работающих операторов биохимического превращения. Отказ оператора нагревания-охлаждения 7 не приводит кот-казу второго вида. [c.169]

    При разделении биохимических проб нередко получаются продукты, загрязненные значительными количествами нелетучих электролитов. В некоторых случаях достаточно провести деионизацию, как описано выше, но образование сильных кислот или оснований на первой стадии ионного обмена обычно вызывает заметное изменение pH среды, что в свою очередь приводит к видоизменениям компонентов пробы. Этого можно избежать, если применять смешанные смолы, однако это неэкономично и усложняется тем, что многие органические соединения адсорбируются на поверхности смолы. Для решения подобной задачи можно использовать ионообменную хроматографию с летучими буферными растворами (аммиак или карбонат аммония). В этом случае можно подобрать такие условия, чтобы компоненты пробы хроматографически отделялись от загрязняющих их электролитов. [c.595]

    Итак, в ситовой хроматографии для хорошего разделения нужны достаточно длинные колонки. Вследствие того что коэффициент К не может превышать 1, при величине объема элюирования, равной у у колонке не остается вешества. Поэтому можно подобрать время ввода образцов таким образом, чтобы избежать частичного перекрывания предыдущей и последующей проб и разделять на одной колонке одновременно несколько образцов. Вначале в ситовой хроматографии чаще всего использовались водные растворы, а в качестве неподвижной фазы применялись сшитые декстраны. Когда эти гели набухают, они тановятся сравнительно мягкими. В основном разделение на декстранах проводили в стеклянных колонках при малой скорости потока растворителя. Гели главным образом применяют для разделения биохимических вешеств, а также для определения молекулярных весов. В последнем случае наибольший успех был достигнут при исследовании глобулярных белков. В данной главе основное внимание будет уделено разделению с помощью неводных растворителей Неподвижные фазы, используемые при работе с водными растворами, не могут применяться в случае органических растворителей, так как они не набухают и остаются непроницаемыми. Д р /2/ об- [c.109]

    Иерархическая структурная схема БТС в зависимости от степени ее детализации может охватывать большое число уровней, начиная от ферментативных реакций на уровне отдельных клеток и кончая уровнем функционирования целых подсистем, например ферментация, разделение микробиологических суспензий и т. д. Однако количественный анализ такой структурной схемы в целом с использованием методов математического моделирования представляет собой сложную задачу. С практической точки зрения более эффективно при анализе системы выделить в иерархической схеме ближайшие уровни, описывающие поведение основных подсистем и элементов БТС. Элементами БТС являются условно неделимые единицы — технологические аппараты, в которых осуществляется целенаправленное протекание технологических процессов физической, химической или биохимической природы. К таким аппаратам относятся инокулятор — аппарат для получения засевной биомассы микроорганизмов биохимический реактор — аппарат для проведения процесса микробиологического синтеза флотаторы, центрифуги, сепараторы — аппараты для разделения микробиологических суспензий и др. [c.18]

    Хелатирующие смолы содержат амины карбоксилатов в качестве функциональных групп, и хотя они не нашли широкого применения для разделения неорганических веществ, но используются в химическом анализе морской воды [130, 132]. Смолы, удерживающие ионы, в основном, используются для разделения биохимических соединений. Типичным примером такой смолы являюг-ся сферические зерна, содержащие парные анионные и катионные группы [130]. Макропористые смолы содержат микропоры, аналогичные по размеру пор смолам типа гелей, а плотная и жесткая матрица пронизана макропорами. Разделение с помощью таких смол зависит от кинетики обмена для крупных молекул, которые входят в макропоры относительно быстрее чем маленькие ионы, занимающие микропоры. [c.628]

    В данном разделе рассматривается установка для концентрирования растворов высокомолекулярных соединений (ВМС) с применением ультрафильтрации. Концентрирование растворов ВМС путем выпаривания обычно неэффективно вследствие разрушения ВМС (особенно биохимических препаратов). Применение ультрафильтрацпи позволяет довести концентрацию ВМС до уровня, при котором возможно непосредственное использование раствора в технологическом процессе или извлечение из него ВМС другими методами разделения. [c.201]

    Химики-органики развили методологию синтеза для того, чтобы лучще понимать механизмы органических реакций и создавать новые соединения. Биохимики в свою очередь изучают процессы жизнедеятельности, применяя биохимические методы исследования (очистка и определение активности ферментов, метод радиоактивных индикаторов в системах in vivo). Первые владеют методами, позволяющими получать аналоги соединений, присущих биологическим объектам, но часто затрудняются определить, какой синтез был бы полезен. Вторые способны оценить, что именно было бы полезно синтезировать в лаборатории, но не обладают нужной квалификацией для рещения этой задачи. Очевидна необходимость согласованного подхода, и химики-биоорганики часто работают в двух лабораториях в одной — синтезируя, в другой — изучая биологические объекты. В результате переплетения химических и биологических подходов была выработана качественно новая концепция построения моделей для изучения и разделения различных параметров сложного биологического процесса. Многие биологические реакции, а также действие (специфичность и эффективность) участвующих в них [c.13]

    Эти процессы приводят к образованию рацемических смесей. Однако считается, что при спонтанной кристаллизации происходило разделение смесн. Наиболее вероятно, что разделение проходило случайным образом. Видимо, определяющую роль в разделении оптически активных соединений путем селективного комплексоебразования одного определенного стереоизомера играли минералы, как, например, природные асимметричные кристаллы кварца, и ионы металлов. В конце К01Щ0В, стереоселективная полимеризация олефинов на поверхности металлов (катализаторы Циглера — Натта) представляет собой хорощо изученный промышленный процесс для получения изотактических полимеров. Известно также, что связывание ионов металлов весьма важно для многих биохимических превращений. Такое связывание существенно для поддержания нативной структуры нуклеиновых кислот и многих белков и ферментов. Процесс отбора оптических изомеров мог происходить вследствие других физических явлений, например взаимодействие с радиоактивными элементами, радиация или космические лучи. Недавно проведенные эксперименты с стронцием-90 показывают, что D-ти-роэин быстрее разрушается, чем природный L-изомер. Весьма заманчиво привлечь эти факторы для объяснения происхождения диссимметричности в процессах жизнедеятельности. [c.186]

    Овладение знаниями по основам строения, реакционной способности, экспериментальными приемами, методами разделения и анализа органических соединений, понимание механизмов органических реакций позволит будущим инженерам-химикам-технологам успешно изучить технологию переработки нефти и газа, нефтехимический и биохимический синтез, а впоследствии сознательно управлять реальными про-мьшменными процессами и создавать новые зф4)ектнвные безотходные технологии. [c.286]

    Второй (биохимический) метод разделения виноградной кислоты был основан на избирательной способности некоторых микроорганизмов ассимилировать предпочтительно один из оптических антиподов. Иапример, при размножении грибковой плесени (Реп1с111и1п gIau um) на разбавленных растворах виноградной кислоты или ее солях эта плесень поедает правую винную кислоту, оставляя левую в неизменном состоянии. [c.215]

    Бариевые соли адениловой, гуаниловой, уридиловой и ци-тидиловой кислот являются наиболее удобной формой для выделения, хранения и применения нуклеотидов. Последние находят все больщее применение как для препаративных целей (синтез нуклеозидов, коферментов и т. д.), так и для биохимических исследований и в медицинской практике. Нуклео-зид-2 (3")-фосфаты бария могут быть получены из рибонуклеиновой кислоты щелочным гидролизом с последующим разделением методом ионообменной хроматографии и осаждением в виде бариевых солей. [c.93]

    Флотационное концентрирование биосуспензий, несмотря на известные положительные стороны (простота оборудования, низкие энергозатраты), ограниченно используется в связи с невысокой степенью извлечения микробных клеток в отдельном флотационном аппарате. Дополнительных технологических приемов при использовании в биохимическом производстве требует также способ фильтрационного разделения для мембранных фильтров. Это связано с подбором размеров пор и структуры мембраны, для барабанных фильтров с выбором фильтрующего материала, применением реагентов — фильтровальных добавок и т. д. [c.237]

    РАСЩЕПЛЕНИЕ РАЦЕМАТОВ, разделение рацематов на составляющие их энантиомеры. Методы Р. р. 1) мех. разделение кристаллов при визуальном контроле. Возможно в тех случаях, когда рацемат представляет собой конгломерат кристаллов право- н левовращающих форм 2) биохимический метод, основанный на стереоспецифичности ферментативных р-ций. Наир., при действии фермента ацнлазы на рацемич. N-ациламинокислоту гидролизу (а следовательно, и отделению) подвергается лишь L-форма 3) хим. метод (наиб, универсальный), заключающийся в том, что на рацемат действуют оптически активным реагентом, в результате чего образуется новая пара в-в —диастереомеров, к-рые м. б. разделены вследствие различия в их физ. св-вах 4) хроматографирование рацематов на оптически активных стационарных фазах. Так, газожидкостная хроматография исиольз. для количеств, анализа соотношения энантиомеров, а лигандообменная — для ирепаративгюго Р. р. Наибольшее практич. значение имеют методы 2 и 3. [c.496]

    В ионообменной хроматографии применяют следующие буферные растворы ацетатный, фосфатный, цитратный, формиатный, аммиачный, боратный. Селективность разделения в ионообменной хроматографии зависит от концентрации и вида буферных ионов и органических растворителей, а также от pH среды. Ионообменное разделение проходит в пределах температур от комнатной до 60°С. Чем выше температура, тем меньше вязкость подвижной фазы и тем эффективнее разделение. Однако при высокой температуре стабильность колонки или образца может быть нарушена. Многие ионообменники выдерживают температуру до 60 °С, а некоторые полимерные катионообменники — даже до 80°С. Биохимические пробы принято разделять при низких температурах, часто при 4°С, хотя в современной ВЭЖХ при быстрых разделениях вероятность разрушения образца при 20-30°С резко снижается. Повышение температуры может привести к снижению к для всех компонентов образца, а снижение ионной силы подвижной фазы может привести к обратному явлению. [c.36]

    Др. способ расщепления Р.-биохимический-основан на том, что микроорганиз.мы при своем развитии используют только один из двух оптич. изомеров, присутствующих в р. Остающийся энантиомер м. б. выделен. Этот путь позволяет получать только один из энантиомеров, второй необратимо теряется. Избирательность действия микроорганизмов по отношению к энантио.мера.м связана с высокой энантиоселективиостью содержащихся в микроорганизмах ферментов. Поэтому для разделения энантиомеров нет необходимости применять самн микроорганизмы, достаточно использовать в этих целях выделенные из биол. объектов фер.ментные препараты. Наиб, широко для расщепления Р. применяют гидролазы - ферменты, катализирующие гидролиз сложноэфирных или амидных связей. При этом гидролизу подвергается только один из двух энантиомеров субстрата, а разделение конечной смеси, напр., своб. к-ты и ее сложного эфира м.б. легко осуществлено обычными методами. Так, при действии фермента ацилазы на рацемич. К-ациламинокислоту гидролизу (а следовательно, и отделению) подвергается лишь Ь-форма. [c.200]

    В основу разделения сточных вод по категориям положены нх состав и биохимическая характеристика, расход и температура, возможность повторного использования и необходимость локальной очнсткн. [c.208]


Смотреть страницы где упоминается термин Разделение биохимические: [c.14]    [c.179]    [c.81]    [c.410]    [c.70]    [c.12]    [c.567]    [c.19]    [c.41]    [c.385]    [c.81]    [c.155]    [c.7]    [c.60]   
Современное состояние жидкостной хроматографии (1974) -- [ c.232 ]

Современное состояние жидкостной хроматографии (1974) -- [ c.232 ]




ПОИСК





Смотрите так же термины и статьи:

Метод биохимического разделения

Метод биохимического разделения параметр солюбилизации

Метод биохимического разделения упорядоченности



© 2025 chem21.info Реклама на сайте