Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Электроноакцепторные Электронодонорные заместители

    Скорость нуклеофильного присоединения тем выще, чем больше положительный заряд на атоме углерода в карбониле. Увеличение или уменьшение этого заряда зависит от природы заместителей, связанных с углеродом карбонильной группы. Известно, что электроноакцепторные (электрофильные) заместители увеличивают этот заряд и тем самым способствуют присоединению нуклеофильных реагентов. Наоборот, электронодонорные (нуклеофильные) заместители понижают положительный заряд на углероде за счет смещения в его сторону электронной плотности, затрудняя при этом такое присоединение. Например, уксусный альдегид будет проявлять меньшую активность в реакциях нуклеофильного присоединения, чем его трихлорзамещенный аналог — хлораль  [c.127]


    Итак, карбоксильная группа определяет проявление кислых свойств в кислотах. Но сила кислот зависит и от природы радикалов, связанных с этой группой. Действительно, если с ней связан радикал, обладающий электроноакцепторными свойствами, то сила кислот при этом увеличивается (I). Наоборот, электронодонорные заместители вызывают обратный эффект (II)  [c.145]

    Энергия связи 51—О (461 33 кДж/моль) гораздо выше, чем у связей С—С и С—О (335 4-356 кДж/моль), а ее полярность 1 = (4,35,0) 10 ° Кл-м намного меньше вычисленной из электроотрицательностей кремния и кислорода, хотя и выше полярности связи С—О [д, = (3,03,7) 10 ° Кл-м. Длина связи (0,163 нм) ца (Ц)2 нм меньше суммы ковалентных радиусов 51 и О. В силоксанах угол связи 51—О—51 (130—160°) значительно больше обычного валентного угла кислорода в 5/ -гибридизации (109°) и не является жестким. Электронодонорные свойства кислорода в них заметно ослаблены по сравнению с их углеродными аналогами. Эти аномалии объясняются участием р-электронов си-локсанового кислорода и вакантных З -орбиталей кремния в Рл — л-сопряжении, которое усиливается под влиянием электроноакцепторных и ослабляется под влиянием электронодонорных заместителей у кремния. Оно не препятствует свободному вращению вокруг связи 51—О, потенциальный барьер которого очень мал (не более нескольких десятых килоджоуля на моль). В цикло- [c.462]

    Как влияют электронодонорные (ЭД) и электроноакцепторные (ЭА) заместители на реакционную способность пятичленных гетероциклов в реакциях с электрофильными реагентами Сравните реакционную способность фурана, 2-метилфурана и фурфурола. [c.220]

    А ж) учитывая электронодонорный или электроноакцепторный характер заместителей в бензольном кольце, укажите, какой из приведенных ниже аминов более сильное и какой более слабое основание по сравнению с анилином  [c.104]

    Электронодонорные заместители в диене способствуют ускорению реакции, электроноакцепторные замедляют ее. Для диенофила справедливо обратное электронодонорные группы снижают скорость реакции, а акцепторные группы повышают. Циклические диены, в которых двойные связи фиксированы в цисоидной конформации, обычно реагируют быстрее, чем соответствующие соединения с открытой цепью, которые приобретают цисоидную конформацию в результате вращения [660]. [c.242]

    Как ВИДНО, электронодонорные заместители повышают основность аминов и понижают кислотность фенолов, в то время как электроноакцепторные заместители действуют в противоположном направлении — понижают основность аминов и повышают кислотность фенолов. Две последние строчки показывают различие в силе влияния заместителя из ие сопряженного с реакционным центром жета-положения, и из сопряженного с ним пара-положения. Из этого сопоставления видно, что эффект сопряжения значительно сильнее индукционного эффекта заместителя. Влияние заместителей на константы ионизации использовано для создания шкалы количественной оценки их эффектов (см. 2.4.1.). [c.45]


    Светло-желтая окраска исходного 4-нитроанилина обусловлена смещением л-электронов ароматического кольца под влиянием суммарного действия электронодонорного (—NH2) и электроноакцепторного (—NO2) заместителей. [c.80]

    Строение продуктов реакции может быть понято, если учесть, что оно определяется местом присоединения протонов сначала к анион-радикалу и затем к карбаниону, возникающим как интермедиаты в процессе восстановления. При этом следует учесть следующие обстоятельства. Во-первых, протонирование анион-радикалов и карбанионов в кинетически контролируемом процессе происходит предпочтительно по положению, в котором больще плотность отрицательного заряда. Данные по распределению плотности заряда в анион-радикалах, полученные из спектров ЭПР, указывают, что для анион-радикалов, содержащих электроноакцепторный заместитель, таким положением оказывается лд/ д-положение по отношению к заместителю, для анион-радикалов, содержащих электронодонорный заместитель, - мета- и орто-положения. В этих положениях и протекает первый акт протонирования. Во-вторых, следует учесть, что образовавшийся карбанион является мезо-мерным  [c.175]

    Поскольку электронодонорные заместители способствуют увеличению электронной плотности на реакционном центре, то отрицательный знак р означает нуклеофильную (по отношению к реагенту) и электрофильную (по отношению к субстрату) реакции. Если, напротив, введение электронодонорных заместителей тормозит, а электроноакцепторных ускоряет реакцию, то знак р — положительный. Действительно, для электронодонорных заместителей lg < 0 ра < 0 р > 0. Такие реакции имеют нуклеофильный характер по отношению к субстрату и электрофильный — по отношению к реагенту. [c.171]

    Методика применима для широкого круга фенолов с электроноакцепторными и электронодонорными заместителями, для нафтолов и пространственно затрудненных фенолов в большинстве случаев при использовании различных алкилирующих агентов (метилиодид, аллилбромид, эпихлоргидрин, циклопен-тнлбромид, -бутилбромид, бензилхлорид, 1-бром-1-фенилэтан, бромуксусный эфир, диметилсульфат, диэтилсульфат) выходы эфиров фенолов высоки (73—95%), лишь в случае 1- и 2-наф-тола при алкилировании эпихлоргндрином выход снижается до 41—42%. [c.65]

    В обоих случаях лимитирующей по скорости может быть только первая стадия, так как вторая протекает мгновенно, будучи реакцией между ионами. В случае механизма (А) электронодонорные заместители, повышающие основность карбонильного соединения, способствовали бы ускорению реакции, т. е. значение р было бы отрицательным. Наоборот, осуществление механизма (Б) означало бы ускорение реакции электроноакцепторными заместителями, т. е. р было бы положительным. [c.172]

    Исследование констант диссоциации серии бензойных кислот с различными заместителями и их различным положением в кольце дало возможность определить константы сг. Отрицательные значения р указывают на электронодонорные, а положительные значения - на электроноакцепторные свойства заместителей. [c.169]

    В реакцию озонолиза вступают самые разнообразные олефины, включая циклические, расщепление которых приводит к продукту, содержащему две функциональные группы. Олефины с электронодонорными заместителями у двойной связи реагируют во много раз быстрее, чем субстраты с электроноакцепторными группами [155]. При использовании соединений, содержащих более одной двойной связи, как правило, расщепляются все двойные связи. В некоторых случаях, особенно если молекула содержит объемистые заместители, важной побочной реакцией становится превращение субстрата в эпоксид (т. 3, реакция 15-37), причем эта реакция может стать основной [156]. Озонолиз тройных связей [157] менее распространен, и реакция протекает не так легко, поскольку озон представляет собой электрофильный агент [158] и, следовательно, предпочтительно атакует двойные связи (т. 3, разд. 15.6). При [c.280]

    Это будет вызывать соответственный сдвиг в том же направлении остальных электронных пар, в том числе н свободной электронной пары гидроксильного кислорода. Испытывая недостаток электронов, этот кислородный атом будет стремиться компенсировать его, завладевая электронной парой, осуществляющей его связь с водородом. В результате этого водород карбоксильной группы увеличит свой положительный заряд, т. е. приблизится к состоянию ионизации — отщеплению в виде протона. Таким образом, электроноакцепторные заместители должны увеличивать степень диссоциации. Аналогичные рассуждения показывают, что электронодонорные заместители должны действовать в обратном направлении — уменьшать степень диссоциации соответственно замещенных бензойных кислот. Эти ожидания вполне оправдываются, как показывает таблица 12. [c.211]

    Интервал перехода pH 2,4-дипитрофенола в аци-форму составляет 2,6—4,6, полоса поглощения аци-формы обусловлена электроннымп переходами с переносом заряда с электронодо-норного (—ОН) на электроноакцепторный (—NO2) заместитель. В щелочной среде происходит усиление поляризующего влияния электронодонорного заместителя, вследствие его ионизации, что приводит к углублению окраски. Образуется соль ацп-формы, окрашенная в интенсивно-желтый цвет  [c.72]


    Выше уже упоминалось (см, стр, 137) об используемой в промышленности реакции получения фенола и ацетона из кумола (изопропилбензола), протекающей через промежуточное образование гидроперекиси. Исследование этого процесса показало, что наличие электроноакцепторных заместителей в ароматическом кольце (например, МОа-группы в пара-положении) приводит к уменьшению скорости образования гидроперекиси, тогда как электронодонорные заместители ускоряют процесс. Аналогичным образом из тетралина (тетрагидронафталина) путем окисления воздухом и действия щелочью на образующуюся гидроперекись можно получить в препаративном масштабе кетон а-тетралон  [c.301]

    Отметьте электронодонорные (ЭД) и электроноакцепторные (ЭА) заместители. [c.122]

    В результате уменьшается электронная плотность орто- и пара-положений ароматического кольца, в которых возникают частичные положительные заряды. Естественно, что величина этого эффекта в первом примере зависит от строения и свойств К чем большими электронодонорными свойствами обладает К, тем слабее будет электроноакцепторное действие заместителя на ароматическую систему кольца. Изложенное позволяет расположить такие заместители по убывающей силе электроноакцепторности в следующий ряд СО—С1, СО—Н, СО—ОН, СО—ННг, СО—О- По аналогичным соображениям можно предвидеть, что эффект сопряжения [c.43]

    Большинство карбенов являются электрофилами, и в соответствии с этим электронодонорные заместители в олефине увеличивают скорость реакции, а электроноакцепторные — снижают ее [800], хотя диапазон относительных скоростей не очень велик [801]. Как уже обсуждалось в т. 1, разд. 5.11, карбены в синглетном состоянии (а это наиболее характерное для них состояние) дают продукты стереоспецифичного син-присоедине-ния [802], по-г.идимому, по одностадийному механизму [803], аналогичному механизму а реакций 15-47 и 15-48  [c.267]

    Механизм Порядок реакции Обмен р-водорода быстрее элн-мннированни Вид основного катализа н/ о Электроноакцепторные заместители при СрГ Электронодонорные заместители при Изотопный эффект уходящей группы или эффект элемента [c.19]

    При расчете дипольных моментов сложных органических молекул по векторной схеме предпочитают пользоваться не моментами отдельных связей, а так называемыми групповыми моментами, характеризующими значение и направление вектора диполь-ного момента молекулы, содержащей ту или иную группу атомов (заместитель) X, связанную с фенильным (СеНз) или метильным (СНз) радикалом. Групповому дипольному моменту приписывают знак плюс , если положительный полюс диполя молекулы СбНзХ (или СНзХ) находится на заместителе X (электронодонорные заместители— СНз, СНзО, МНо и т. п.). Напротив, группы, являющиеся центрами отрицательного заряда, характеризуются отрицательным значением группового момента (электроноакцепторные заместители — 01, Вг, ЫОа и т. п.). [c.324]

    Заместители первого рода обладают электронодонорным характером и увеличивают электронную плотность ароматического кольца, заместители второго рода действуют в противоположном направлении, оказывают электроноакцепторное влияние. Как электронодонорное, так и электроноакцепторное действие заместителей является результатом их индуктивного эффекта и эффекта сопряжения. Считают, что индуктивный эффект передается по 0-связям и быстро уменьшается с расстоянием орто- > > мета- > пара-. Эффект сопряжения распространяется по я-свя-зям, затухает значительно медленнее и передается только в сопряженные орто- и пара-положения, не затрагивая дгета-положение. Индуктивный эффект и эффект сопряжения могут оказывать согласованное или не согласованное влияние на распределение электронной плотности ароматического субстрата. [c.42]

    Стабильность феноксид-аниона объясняется тем, что отрицательный заряд частично распределен по аро-ч магическому кольцу (рис. 30.8). При наличии в кольце электроноакцепторных групп электроны еще сильнее оттягиваются от атома кислорода, что приводит к дополнительной стабилизации аниона. Поэтому 4-хлорфенол — более сильная кислота, чем фенол, а 2,4,6-трипитрофенол — очень сильная кислота с рКа 0А2. Наоборот, электронодонорные заместители, такие, как —СНз, уменьшают кислотность фенолов. [c.653]

    Заместители в бензольном кольце анилина оказывают такое влияние на его основные свойства, которое поддается количественной и качественной оценке на основе обычных электронных эффектов заместителей. Электронодонорные заместители вызывают повьпиенне, а электроноакцепторные заместители понижают основность замещенного анилина (табл. 21.2.) [c.1616]

    Так как электроноакцепторные заместители Н в Л1-или /г-прложениях II увеличивают силу кислоты, т. е. константу ионизации К по сравнению с К то из уравнения (VI, 13) вь1текает, что эти заместители характеризуются положительными значениями а. Электронодонорные заместители в ядре, наоборот, понижают кислотность им необходимо приписать отрицательные значения о. [c.167]

    Скорость реакции радикального арилирования бензола возрастает при введении в его молекулу заместителей любого характера, причем заместитель ориентирует вступающий заместитель преимущественно в орто- и пара-положения. Так, нитробензол и анизол фенилируются примерно в три раза быстрее бензола, образуя о- и п-фенилпроизводные с некоторым преобладанием орто-замещенных. Эта специфика влияния заместителей при радикальном замещении объясняется тем, что стабильность радикального ст-комплекса зависит прежде всего от делокализации в нем неспаренного электрона. При этом и электроноакцепторные и электронодонорные заместители, находящиеся в орто- и лара-положе-нии к месту радикальной атаки, увеличивают делокализацию неспаренного электрона в ст-комплексе и тем самым повышают стабильность и облегчают его образование  [c.226]

    Не удивительно поэтому, что однозначного ответа на вопрос об относительной миграционной способности радикалов нет. Чаще миграционная способность арильного радикала больше, чем алкильного, но известны и исключения, а положение в этом ряду водорода часто непредсказуемо. В некоторых случаях миграция водорода преобладает над миграцией арила, в других — ситуация обратная. Часто образуются смеси, состав которых зависит от условий. Например, нередко сравнивалась миграционная способность групп Ме и Е1. В одних случаях большей миграционной способностью обладал Ме, в других — [34]. Однако можно сказать, что в ряду арильных мигрирующих заместителей электронодонорные заместители в пара- и лгета-положениях увеличивают миграционную способность, а те же заместители в орто-положении ее уменьшают. Электроноакцепторные заместители во всех положениях снижают способность к миграции. Бахман и Фергюсон [35] определили ряд относительной миграционной активности /г-анизил 500 п-толил 15,7 лг-толил 1,95 фенил 1,00 л-хлорофенил 0,7  [c.120]

    Видно, что эти механизмы состоят из двух или трех стадий соответственно, и тем не менее вполне возможна согласованность двух или трех из них. Принципиально механизмы можно различить, изучая влияние заместителей на миграцию групп. В механизме а реакция по отношению к мигрирующей группе является электрофильным ароматическим замещением с переходным состоянием, в котором кольцо положительно заряжено. Электронодонорные заместители в орго- или /гара-положении будут способствовать миграции, электроноакцепторные — замедлять ее. При механизме б реакция является нуклеофильным ароматическим замещением с отрицательно заряженным переходным состоянием эффект заместителей будет противоположным. Полученные результаты согласуются с механизмом а [189]. Остается открытым вопрос о числе стадий в механизме. Имеются доказательства того, что в некоторых случаях процесс двухстадиен интермедиат 62 был выделен в виде литиевого производного и превращен в диарилацетилен нагреванием [190] кроме того, показано протекание водородно-дейтериевого обмена [185]. Однако в других случаях возможно согласованное осуществление двух стадий. Стереоселективность реакции не требует такого согласованного механизма, так как винильные карбанионы могут сохранять конфигурацию (т. 1, разд. 5.5). [c.151]

    Окислительно-восстановнгельный, или нормальный, потенциал Е является характерным для каждого хинона. Его величина зависит от строения хинона, Электронодонорные заместители снижают окислительные свойства хинона, а электроноакцепторные —увеличивают. Потенциал Е возрастает в следующем ряду г < б < а < в. См. [5], II, с. 486. [c.238]

    Порядок прибавления реагентов. Этот фактор определяется реакционной способностью субстратов по отношению к электрофнль-ным агентам. Соединения, имеющие электронодонорные заместители, облегчающие вхождение нитрогруппы в ядро, обычно нитруют прибавлением к субстрату ннтросмеси. Наличие электроноакцепторных заместителей затрудняет нитрование, а поэтому исходное соединение прибавляют в нитросмесь. [c.106]

    Электронодонорные заместители в радикале ацилгалогенида способствуют транс-присоедниению, электроноакцепторные - г/г. с-присоединению  [c.527]

    В литературе имеются обзоры [89, 90], посвященные этому методу синтеза, при котором в молекулу можно ввести одну или несколько галогеналкильных групп. Наибольшее применение эта реакция нашла в ароматическом ряду, хотя она может быть проведена также и с некоторыми гетероциклическими и алифатическими соединениями. Алкилирующий агент является бифункциональным, поэтому необходимо применять такие условия, в которых бы работал только один активный центр, что позволило бы сохранить галогеналкильную группу. Электронодонорные заместители способствуют замещению в ароматическом кольце, а электроноакцепторные тормозят замещение. Так, фенолы легко хлорметилируются действительно, в этом [c.460]


Смотреть страницы где упоминается термин Электроноакцепторные Электронодонорные заместители: [c.100]    [c.61]    [c.165]    [c.30]    [c.37]    [c.403]    [c.240]    [c.191]    [c.404]    [c.174]    [c.343]    [c.799]    [c.1020]    [c.1285]    [c.1679]   
Органическая химия Издание 6 (1972) -- [ c.211 ]




ПОИСК





Смотрите так же термины и статьи:

Цианиновые красители электронодонорные и электроноакцепторные заместители

Электроноакцепторные заместител

Электроноакцепторные и электронодонорные

Электронодонорные



© 2025 chem21.info Реклама на сайте