Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Кислоты, стабилизация поливинилхлорида

    Поскольку скорость термодеструкции поливинилхлорида обратно пропорциональна его молекулярной массе, инициирование вероятнее всего происходит у концов цепей. Возможно, что стабилизация поливинилхлорида бариевыми и кадмиевыми солями карбоновых кислот заключается в обмене его подвижных атомов хлора на карбоксильные группы стабилизаторов. [c.237]


    Особый характер защиты полимеров от разложения имеет стабилизация поливинилхлорида. Действие стабилизаторов поливинилхлорида основано на их способности связывать выделяющийся при разложении полимера хлористый водород и превращаться в хлориды. Для этой цели применяют кальциевые, бариевые, свинцовые (основные) соли стеариновой и других кислот. Наиболее эффективны различные соединения свинца. Применяют также соединения, имеющие эпоксигруппы. [c.91]

    Металлические соли органических кислот как жирного, так и ароматического ряда относятся к наиболее распространенному типу стабилизаторов. Наряду со стабилизирующим действием, многие из них обладают свойствами лубрикантов [173]. В обзорной статье [174], посвященной обобщению данных по использованию мыл для стабилизации поливинилхлорида, отмечается, что в течение последних лет соли неорганических кислот постепенно вытесняются мылами, среди которых наиболее распространены стеарат свинца и лаураты бария и кадмия. В качестве стабилизаторов поливинилхлорида и сополимеров винилхлорида предложены и применяются соли свинца, олова, бария, кальция, кадмия, стронция, натрия и лития таких кислот, как муравьиная, щавелевая, малеи-новая, каприловая, ундециленовая, лауриновая, стеариновая, рицинолевая и др. [175, 179—184]. Рекомендованы металлические соли кислот ароматического ряда —замещенной бензойной [185], фталевой, бензойной, галловой, салициловой, -фенилпропионовой, -фенил-а-аминопропионовой [186]. [c.173]

    Амиды органических кислот для стабилизации поливинилхлорида применяются чаще, чем амины. Достаточно полно патентная и периодическая литература, относящаяся к стабилизации полимера и сополимеров винилхлорида амидами, в частности производными мочевины и тиомочевины, представлена в обзоре [154]. Интересны рекомендации по применению в качестве стабилизаторов поливинилхлорида замещенных амидов фосфорной [272] и стеариновой [273] кислот. Эти амиды содержат трехчленные этилениминные циклы, легко размыкающиеся при взаимодействии с НС1. [c.182]

    В последние годы для стабилизации поливинилхлорида и сополимеров винилхлорида все чаще рекомендуются алифатические и ароматические эфиры фосфорной кислоты — фосфиты. В патенте [c.184]

    Газом, выделяюш,имся при разложении поливинилхлорида, является хлористый водород. Поэтому для стабилизации полимера нужны такие вещества, которые способны поглощать этот газ, например кальциевые или свинцовые соли стеариновой и других кислот. Соли, реагируя с хлористым водородом, превращаются в хлористый свинец и кислоту [c.175]


    При термодеструкции поливинилхлорида (ПВХ) в температурном интервале до 613 К обнаружено определенное влияние способа получения полимера на кинетику процесса и термостабильность полимера [3]. Было установлено, что полимеры, полученные полимеризацией под действием у-излучения и пероксида бензоила (ПБ), обладают примерно одинаковой стабильностью, а ПВХ, полученный инициированием полимеризации динитрилом азобисизомасляной кислоты (ДАК), имеет заметно более низкую термостабильность в температурном интервале 493—543 К. Однако при % 60%-ной потере массы наблюдается стабилизация процесса термодеструкции всех исследованных образцов ПВХ, что, по-видимому, связано со значительным дегидрохлорированием полимера с образованием полиеновых и сшитых структур. [c.31]

    Для характеристики светозащитного действия 2-окси-4-мет оксибензофенона в пленках поливинилхлорида испытывались различные смеси стабилизаторов, после чего проводилась сравнительная оценка механических и оптических свойств подвергавшихся облучению пленок . Светостойкие пластифицированные композиции, по данным длительного (до 6 тыс. ч) испытания в везерометре, получены при применении стабилизатора на основе смеси бариевых и кадмиевых солей органических кислот с эпоксидным стабилизатором и трифенилфосфатом. При этом стабильность пленки толщиной 1 мм составила в везерометре 1000 ч и соответственно при 170° С около 2 ч. Добавление 2-окси-4-метоксибензофенона (2%) уменьшает скорость изменения прочностных характеристик материала в 4—6 раз. При стабилизации препаратами свинца, например силикатом или двухосновным фосфитом свинца с добавкой его стеарата, стабильность в везерометре составила 500 ч, а при нагревании до 170° С — около 1 ч. Оловоорганические стабилизаторы (дилаурат дибутилолова с некоторым количеством малеината дибутилолова) заняли в этой серии испытаний промежуточное положение между смесями барий-кадмиевых солей с эпоксидными смолами и свинцовыми стабилизаторами. Во всех случаях добавление 2-окси-4-метоксибензофенона увеличивает светостойкость материала (по данным испытания в везерометре) в несколько раз. [c.252]

    Нагревание и старение поливинилиденхлорида приводят, кроме ухудшения механических свойств, к изменению цвета полимера, в связи с чем требуется стабилизация (слабым акцептором кислоты), как и для поливинилхлорида. Плохая растворимость полимера, а также высокая температура размягчения и близость ее к температуре разложения, осложняют переработку поливинилиденхлорида и ограничивают его применение в технике. [c.90]

    При исследовании свето- и термостабильности и устойчивости к ускоренному старению эмульсионного и суспензионного поливинилхлорида, содержащего различные стабилизаторы, наилучшие показатели были получены для полимеров, содержащих эпоксидные стабилизаторы в комбинации с солями тяжелых металлов Применение эпоксисоединений для стабилизации поливинилхлорида является также весьма экономически выгодным по сравнению с дорогостоящими кадмиевыми стабилизаторами Эта группа стабилизаторов включает такие соединения, как эпоксидированные диэфиры 3-циклогексен-1,1-диметанола и жирных или ненасыщенных кислот 9 эпоксисоединения, содержащие группы окиси этилена, пропилена, стирола, эпихлор-идрина, 1,2-эпоксид о децена полиэпоксиды, содержащие более [c.491]

    Рассматривая возможные пути подавления процессов разложения полимеров и сополимеров винилхлорида под действием световой энергии, необходимо исходить из следующих принципиально возможных направлений. Одно из них — подбор веществ, которые поглощают в области тех же длин волн, что и функциональные группы, входящие в состав полимера. Необходимым условием при этом является высокая собственная устойчивость таких светофильтрующих агентов. Только при соблюдении этого условия УФ-погло-тители будут поглощать фотоны и, не разрушаясь, преобразовывать их в тепловую энергию. В противном случае продукты их превращений могут инициировать фотосенсйбилизированный распад полимера. В качестве светофильтрующих агентов при стабилизации поливинилхлорида практически используются сложные эфиры ароматических кислот и фенолов, а также производные бензофенона. Второй путь светостабилизации поливинилхлорида состоит во введении в композицию соединений, способных замедлять свободно радикальные цепные реакции при фотораспаде или связы- [c.157]

    На практике, как правило, применяются не индивидуальные соли, а смеси, которые позволяют усилить эффективность стабилизирующего действия. Такие смеси могут содержать однотипные стабилизаторы, например смешанные или соосажденные соли бария, кадмия [200—203], а также добавки других типов стабилизаторов, усиливающих действие солей. В качестве добавок рекомендованы окислы свинца, бария, кальция, магния, кислоты жирного ряда [204], эфиры ароматических, фосфорной и фосфористой кислот [205], производные фталевого ангидрида [206], клешневидные соединения титана, в частности триэтаноламинтитанат [207] и др. Синергическое действие при стабилизации поливинилхлорида проявляется и в таких стабилизирующих системах, в которых некоторые компоненты при индивидуальном использовании не замедляют, [c.174]


    Кроме перечисленных трех основных типов эпоксидных соединений, в литературе есть данные о применении для стабилизации поливинилхлорида некоторых других веществ, содержащих эпоксидные циклы в молекулах. В качестве стабилизаторов описаны соли свинца, бария, кальция, кадмия и алифатических эпоксикислот, с 11 —22 атомами углерода в цепи. Показано, что, в отличие от солей неэпоксндированных жирных кислот, соли эпоксикислот при их совместном применении не дают синергического эффекта [71]. [c.181]

    Из аминов для стабилизации поливинилхлорида применялись эфиры -аминокротоновой и /г-аминобензойной кислот, л-аминобен-золсульфамид [63, 266], гексаметилентетрамин [267] и некоторые другие [268]. В патентной литературе для стабилизации поливинилхлорида и сополимеров винилхлорида рекомендованы фенил- -нафтиламин, этилфенилэтаноламин [269], дицианалкиламины [270], капролактам [271], М-(п-аминофенил)гексаметиленимин [268]. [c.182]

    Из соединений алифатического ряда в качестве стабилизатопов нашли применение спирты рекомендованы для стабилизации поливинилхлорида также алифатические эфиры и алкоголяты. Из спиртов для стабилизации хлорсодержащих высокомолекулярных соединений применяются этиленгликоль, глицерин и гексантриол в смеси с мочевиной [318], спирты с несопряженными двойными связями, например 3,7-диметилоктадиен-1,6-ол-3 [319], и спирты ацетиленового ряда, например бутиндиол [63]. Из эфиров рекомендованы бутилацетилрицинолеат и пропиленгликольдирицинолеат [63], а также сложные моноэфиры высокомолекулярных жирных кислот и многоатомных спиртов [320]. [c.187]

    Возможна также частичная этерификация глицидиловых эфиров многоатомных спиртов жирными кислотами (стеариновой, олеиновой). Получающиеся продукты воско- или маслообразной консистенции содержат 15—20% эпоксидных групп и могут быть использованы для пластифицирования и стабилизации поливинилхлорида. [c.163]

    ВОЙ И других кислот, которые, реагируя с хлористым водородом, превращаются в соответствующие хлориды. Для стабилизации поливинилхлорида можно применять и слабые органические основания, например производные мочевины, а также эпоксисоединения, главным образом глицидиловые эфиры дифенилолпропана и других фенолов. Эпоксисоединения превращаются при этом в соответствующие а-хлорокоисоединения  [c.231]

    Кроме указанных классов соедилений, для стабилизации поливинилхлорида рекомендуются также соединения, ие содержащие металлов сложные эфиры органических кислот, гетероциклические соединения, эпоксисоединения, производные мочевины и др. [c.8]

    Соли органических кислот. Уксуснокислый натрий рекомендуется для стабилизации поливинилхлорида в смеси с аминами. Мак рекомендует соли 2-этил-масляной кислоты, 2-этилкапроновой и 2-метилкаприло- [c.47]

    Для стабилизации поливинилхлорида монсно использовать соединения, являющиеся акцепторами хлористого водорода в технике применяют главным образом свинцовые соли (часто основные), кальциевые, бариевые, кадмиевые соли стеариновой, лауриновой, фосфорной, кремневой и других кислот, которые при взаимодействии с хлористым водородом образуют хлориды. Роль акцепторов хлористого водорода могут выполнять органические основания, например производные мочевины, меламин, а также эпоксисоединения. [c.182]

    Некоторые низкомолекулярные эпоксисоединения наряду со стабилизацией поливинилхлорида оказывают пластифицирующее действие. Низкой летучестью, тепло- и светостойкостью обладают эфиры 3,4-эпокси-циклогексанкарбоновой и 4,5-эноксициклогексан-1,2-дикарбоповой кислот. [c.225]

    По своим свойствам хлорсульфонированный полипропилен аналогичен хлорированному. Вязкость хлорсульфонированного полипропилена в растворе, однако, ниже вязкости хлорированного полипропилена с таким же содержанием хлора и зависит от общего содержания хлора [79]. Хлорсульфонированный полимер пропилена полностью растворим в хлорированных и ароматических углеводородах, частично — в сложных эфирах, кетонах, не растворяется в кислотах и спиртах. При температуре выше 110° С н под действием ультрафиолетового излучения полимер претерпевает деструкцию, которая сопровождается отщеплением хлористого водорода и сернистого ангидрида. Отсюда понятна необходимость стабилизации хлорсульфонированного полипропилена, например стабилизаторами, применяемыми для защиты поливинилхлорида. [c.137]

    Упражнение 19-26. бис-Ы-Нитрозо-Н-метилтерефталамид (терефталевая кислота = бензол-1,4-дикарбоновая кислота) используется в промышленности как вспенивающий агент для таких пластиков, как поливинилхлорид. Метод состоит в смешении этого соединения (в виде суспензии в минеральном масле) с пластической массой и нагревании смеси до тех пор, пока не начнется быстрое спонтанное разложение вспенивающего агента. Происходящее при этом выделение газа дает пористый пластик с отличными физическими свойствами. Напишите уравнения происходящих при этом процессе реакций и вычислите АЯ реакции, проходящей в газовой фазе. Примите, что энергия стабилизации К-нитрозамидной группы составляет 30 ккал/моль. [c.67]

    Эффективность реакции акцептирования хлористого водорода — не единственный фактор, определяющий активность стабилизатора, в частности его способность предотвращать образование стабильных свободных радикалов и полиеновых структур, вызывающих появление окраски. Все стабилизаторы — соли, обеспечивающие высокую цветостабильность, весьма эффективные акцепторы НС1, однако далеко не все сильные акцепторы хлористого водорода предотвращают разложение и появление окраски при нагревании полимера [38]. Вполне возможно, что эффект стабилизации при применении солей органических кислот достигается благодаря замещению лабильных атомов хлора в макромолекулах полимера стабильными, карбоксилатными группами, а также благодаря сокращению длины кинетической цепи распада при нарушении правильного чередования —СНг — и — СНС1-групп в целях макромолекул.Доказательствомэтого могут служить экспериментальные факты, полученные двумя различными методами анализа — ИК-спектро-метрией и применением меченых атомов углерода — и показывающие, что при нагревании поливинилхлорида в присутствии солей бария, кадмия и цинка кислотные группы оказываются химически включенными в состав цепей макромолекул [69]. [c.149]

    Серусодержащие соединения, как указано в ряде работ, при стабилизации высокомолекулярных соединений дают синергический эффект с аминами и фенолами [89, 279]. В качестве стабилизаторов поливинилхлорида предложены и применяются меркаптиды сурьмы [280, 281], продукты конденсации альдегидов или кетонов с меркаптанами [63], тиоэфиры [282], соли тиокислот [283], ароматические эфиры алифатических сульфокислот [284], эфиры ксантогеновых кислот [285] рекомендовано применение полисульфида состава [c.184]

    Общие стабилизаторы для продуктов полимеризации. Стабилизаторами для любых продуктов полимеризации являются соли слабых органических кислот и металлов щелочных, щелочноземельных, С(1, РЬ, Мп, Си, и т. д. (например, стеараты или олеаты), часто совместно с мочевиной или ацетатами щелочных металлов. Предложены силикаты кальция, бария, стронция и сер ебра, растворимое стекло, а для поливинилхлорида и его сополимеров — окиси или карбонаты свинца и серебра, а также алкил- или арилпроизводные свинца или олова. Для стабилизации пленок из сополимеров винилхлорида и органических виниловых эфиров предложены Н3РО4, Р2О5, кислые фосфаты и сульфиды и другие сернистые соединения (ксантогенаты, тиофенолы, сернистые соединения группы противоокислителей, тиомочевина) . [c.185]

    Для стабилизации металлических покрытий на основе поливинилхлорида рекомендуются кислые фосфаты [67], для светостабилизации пластифицированного ПВХ — смешанные третичные алкил-арилфосфаты [583], для поливинилидеихлорида — замещенные три-фенилфосфаты, в качестве светостабилизатора для ПВХ — продукт взаимодействия монометил- или монопропилфосфата с мочевиной в молярном соотношении 1 2 [507]. Особое значение имеют металлические соли кислых эфиров фосфорной кислоты. Так, стабилизированный поливинилхлорид получают, проводя эмульсионную полимеризацию в присутствии солей щелочных иди щелочноземельных металлов кислых эфиров фосфорной кислоты, например дигексаде-цилфосфата кальция [1098, 2171, 2654]. [c.268]

    Известно, что эпоксидированные глицериды и эфиры жирных кислот широко применяются в качестве стабилизаторов для поливинилхлорида (ПВХ). Из литературных данных следует, что стабилизирующее действие всегда объясняется тем, что эпоксигруппа служит акцептором хлористого. водорода, причем образуется хлоргидрип. В данной работе не предлагается механизм стабилизации, однако из нее следует, что указанная реакция не имеет места, поскольку сам хлоргидрин — соединение нестойкое и доказательства его образования в образце ПВХ, подвергшемся деструкции, не могли быть получены. В данной работе показано, что происходит реакция вторичной эпоксигрунпы с самой полимерной молекулой. Молекула, содержащая эпоксигрупну, прививается к полимерной молекуле по двойной связи, возникшей вследствие потери хлористого водорода в ПВХ. Из полиэпоксидов образуются, таким образом, сшитые цени. [c.456]

    Неорганические соли в значительной мере вытесняются мылами. Недавно опубликованы данные об использовании мыл для стабилизации ПВХ- Так, в ФРГ в 1950 г. мылами было стабилизировано 13,7% ПВХ, в 1955 и 1956 гг., соответственно, 50 и 54,7%. Среди органических солей металлов наиболее широко применяются в качестве стабилизаторов соли стеариновой, лауриновой, нафтеновой, рицинолевой, фталевой и других кислот. В качестве катионов в этих солях обычно применяются свинец, барий, кальций, кадмий, а также литий, натрий, магний, стронций, олово и сурьма . Неорганические и органические соли свинца и кадмия не применяются в атмосфере, содержащей сероводород. Кроме того, применение этих солей ограничивается их токсичностью. Выпуск поливинилхлорида, стабилизированного солями свинца , [c.87]

    Стабилизаторы. В качестве стабилизаторов поливинилхлорида в основном применяются соли свинца, бария, кадмия. Наиболее эффективны силикат, основной сульфат, карбонат и фосфат свинца. Широко используются для стабилизации полимеров соли олова, бария, кальция, кадмия, стронция, натрия и лития, таких кислот, как муравьиная, щавелевая, малеиновая, каприловая, лауринова5 , стеариновая и др. [c.16]


Смотреть страницы где упоминается термин Кислоты, стабилизация поливинилхлорида: [c.87]    [c.282]    [c.177]    [c.188]    [c.97]    [c.278]    [c.181]    [c.103]    [c.331]    [c.820]    [c.31]   
Стабилизация синтетических полимеров (1963) -- [ c.263 , c.270 ]




ПОИСК





Смотрите так же термины и статьи:

Поливинилхлорид



© 2025 chem21.info Реклама на сайте