Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Сродство к иону

Рис. 7.5. Модель активного транспорта ионов через мембрану. Согласно модели, Ка+,К -насос является переносчиком с более высоким сродством к ионам натрия внутри клеточной мембраны, а к ионам калия — снаружи. Изменение сродства происходит вследствие конформационных изменений при фосфорили-ровании и дефосфорилировании. Неясно, каким образом натрпйсвязывающие центры белков перемещаются с внутренней стороны мембраны на наружную. Не доказано вращение, предполагаемое моделью. Неясно также, поче на каждые три нона Ма+ транспортируется только два иона К" ". А=АТР Рис. 7.5. <a href="/info/1893449">Модель активного транспорта ионов</a> <a href="/info/152902">через мембрану</a>. <a href="/info/771004">Согласно модели</a>, Ка+,К -насос является переносчиком с <a href="/info/1456069">более высоким</a> сродством к <a href="/info/263999">ионам натрия</a> внутри <a href="/info/4417">клеточной мембраны</a>, а к <a href="/info/14688">ионам калия</a> — снаружи. <a href="/info/960322">Изменение сродства</a> происходит вследствие <a href="/info/2999">конформационных изменений</a> при фосфорили-ровании и дефосфорилировании. Неясно, каким образом натрпйсвязывающие <a href="/info/166596">центры белков</a> перемещаются с внутренней <a href="/info/1388494">стороны мембраны</a> на наружную. Не доказано вращение, предполагаемое моделью. Неясно также, поче на каждые три нона Ма+ транспортируется только два иона К" ". А=АТР

    Стекла, состоящие из оксидов кремния, натрия и кальция, обладают резко выраженным специфическим сродством к ионам Н+. Вследствие этого при соприкосновении с нейтральными или кислыми растворами (водными) солей натрия в поверхностном слое подобного рода стекол ионы Na+ оказываются почти полностью замещенными на ионы Н+. Поэтому стеклянный электрод, содержащий мембрану из такого стекла, обладает преимущественно Н --функцией. Потенциал стеклянного электрода, иными словами, э.д.с. элемента типа (ХХП) со стеклянной мембраной должна подчиняться уравнению (IX. 98), которое принимает вид, если мешающие ионы Na+  [c.532]

    К комплексообразованию. Согласно Косселю, было принято (см. стр. 73), что первая константа кислотной диссоциации акво-иона увеличивается с ростом прочности связи молекул воды с ионом металла. Это не означает, что константа кислотной диссоциации прямо пропорциональна прочности связи воды. Наоборот, так как ион гидроксила значительно больше деформируется, чем молекула воды, то причину большой константы кислотной диссоциации следует искать прежде всего в том, что ион металла проявляет относительно большее сродство к иону гидроксила, чем к молекуле воды. С точки зрения электростатики ясно, что с ростом способности связывать сильно деформируемые лиганды (независимо от того, идет ли речь об ионе гидроксила, молекуле аммиака, ионе галоида и т. д.) должно происходить увеличение сродства к менее деформируемым лигандам, подобным молекулам воды- Исходя из этого, по мнению автора, способность, с которой ион металла в водном растворе образует определенные комплексные соединения с аминами, анионами и т. п., естественно рассматривать как меру того, насколько сам акво-ион является химическим соединением. [c.80]

    Если растворитель обладает значительным сродством к ионам и вы [c.309]

    Применяя иониты, селективные по отношению к определенным ионам, можно оказывать влияние на состояние равновесия ионного обмена. Чем больше сродство ионита к иону по сравнению со сродством к иону Н+, тем полнее проходит ионный обмен в верхнем слое ионита и тем меньше переходный слой. [c.379]

    Выполненные нами исследования приводят к следующим представлениям о механизме протекания процесса. При контакте минералов с раствором едкого натра гидроксил-ионы, обладая высо-ВДм химическим сродством к ионам железа, адсорбируются на их Поверхности и образуют с изучаемыми сульфидами адсорбированный комплекс. В условиях электрохимического окисления вследствие смещения потенциала минералов в положительную сторону связь иона ОН с ионом железа упрочняется, достигая прочности вязи в гидроксиде железа Ре (ОН) 2, являющемся начальным продуктом процесса. В щелочной среде в присутствии кислорода "е(0Н)2 быстро окисляется до Ре(ОН)з, а затем переходит в бо-устойчивое соединение — РегОз. В конечной стадии окисление Минералов завершается образованием в основном оксида железа сульфата натрия и арсената натрия. [c.79]


    На следующем этапе связываются 2 иона К+. Для конформации В характерно высокое сродство к ионам К+- Обратный переход в конформацию А, сопровождающийся освобождением ионов К" " во внутреннее пространство клетки, инициируется гидролитическим отщеплением фосфорильной группы в виде неорганического фосфата (Р,). [c.365]

    Карбоксильные катиониты имеют высокое сродство к ионам щелочноземельных металлов. Установлен следующий ряд поглощения при pH = 7  [c.109]

    Характерным свойством ионообменников являются высокая селективность к ионам Н+ и относительно высокое сродство к ионам щелочноземельных металлов. Ряды селективности для ионов металлов имеют обратный порядок по сравнению с сильнокислотными ионообменниками. [c.34]

    При адсорбции из нейтрального раствора основные, нейтральные и часть кислых аминокислот сорбируются катионитом, аспарагиновая и глютаминовая кислоты — анионитом. При сорбции из раствора с pH = 3, где подавляется кислотная диссоциация, все аминокислоты извлекаются катионитом. Катионит КУ-2 кроме солей частично поглощает красители. Для отделения солей раствор мелассы обрабатывали слабокислотным катионитом КБ4-П2, имеющим сродство к ионам кальция и плохо сорбирующим аминокислоты. Аминокислоты из ионитов извлекали 5-кратным количеством 1 н. соляной кислоты по отношению к обменной емкости смолы. Кислоту из элюата выпаривали, и полученные водные растворы аминокислот хроматографировали на бумаге. [c.215]

    При оценке эффективности присадок требуется очень большая осторожность. Даже если различные присадки сообщают продукту одинаковую удельную проводимость, образующиеся электрические заряды все же могут быть неодинаковыми , так как величина зарядов зависит от природы стенки и ее сродства к ионам. [c.282]

    Если растворитель обладает значительным сродством к ионам и высокой диэлектрической проницаемостью, происходит полное превращение электролита в ионы, и вещество становится сильным электролитом. В этом случае [c.355]

    Близкое совпадение концентраций катионов, полученных в зависимости от pH для гуминовой и салициловой кислот, свидетельствует о том, что наивысшую кислотность и сродство к ионам металлов имеют в гуминовой кислоте, карбоксильные группы, находящиеся в орго-положении к фенольным. [c.271]

    Разброс точек на графиках в зависимости от концентрации кислоты указывает на наличие дополнительных кислотных групп в гуминовой кислоте отличных от упомянутой о-карбоксильной. Эти группы обладают меньшим сродством к ионам металлов и меньшей кислотностью, чем у салициловой кислоты, что хорошо видно из графиков растворимости для Ре + и А1 +. [c.272]

    Катиониты слабокислотного типа могут использоваться также для поглощения органических оснований с очень большим молекулярным весом, например, стрептомицина. Другим важным свойством карбоксильных катионитов является их высокое сродство к иону водорода. Даже небольшого количества разбавленной соляной кислоты достаточно для полной регенерации катионита. Высокое сродство к иону водорода иногда становится недостатком например, карбоксильный катионит в Na-форме нельзя промывать водой, так как при этом он теряет ионы натрия (гидролиз Доннана). [c.147]

    Необходимо подчеркнуть, что, по всей вероятности, невозможен один ряд катализаторов с одинаковой во всех случаях каталитической активностью. Так трехфтористый бор слабо соединяется с ионом хлора, однако он проявляет большое сродство к иону фтора. По-видимому, это вызывается стерическими затруднениями ион B l весьма неустойчив, а ионы ВГГ и Al ir вполне стойки. Поэтому трехфтористый бор не катализирует реакцию циклогексилбромида с бепзолом [72], однако он весьма сильно катализирует реакцию циклогексилфторида с ароматическими соединениями [712]. Поэтому трехфтористый бор является активным катализатором по отношению к спиртам, олефинам и фторпроизводным и может занять первое место в ряду с более активными катализаторами. С другой стороны, в реакциях, использующих алкилхлориды или алкилбромиды, он не является эффективным катализатором и должен занять поэтому одно из последних мест. [c.429]

    Комплексообразующими свойствами обладают смолы, содержащие остатки комплексонов, таких, например, как трилона А (ни-трилотриуксусная кислота) или трилона Б (этилендиаминтетраук-сусная кислота). Смолы такого типа обладают сильно выраженным селективным сродством к ионам металлов определенных групп. Так, например, на ионите типа КТ-2, содержащем остаток трилона Б, коэффициент разделения никеля и натрия равен 9,25, меди и натрия — 8,10, кобальта и натрия — 4,48. [c.111]

    По странному совпадению незадолго до публикации статьи Педерсена (32а] было найдено, что антибиотик валиномииин (222) (схема 4.66) обладает высоким комплексобразовательным сродством к иону К+ и способен служить его переносчиком через мембраны. Его сродство к превьппаст таковое к [c.473]

    У микроорганизмов выявлено огромное число мутаций, которые влияют на их способность изменять поглощение питательных веществ [38]. Здесь мы ограничимся рассмотрением системы, обеспечивающей транспорт калия в Е. oli [45, 47]. Один из мутантов Е. oli нормально живет в 0,1 М растворе К+, но не может существовать при значительно более низких концентрациях этого иона, хотя большинство других штаммов легко переносят такие условия. У штамма Е. oli К 12 обнаружено по крайней мере 6 генов, необходимых для функционирования трех разных систем, обеспечивающих поглощение калия. Две такие системы транспортируют калий внутрь клетки (против градиента концентрации) при сравнительно высоких концентрациях ионов К+ в окружающей среде. Третья система способна накачивать ионы К+ в клетку из среды с очень низкой концентрацией значение, характеризующее полунасыщение системы (/См), составляет приблизительно 10 М. Интересно отметить, что если бактерия растет -в среде с высоким содержанием К+, то система, характеризующаяся высоким сродством к ионам К+, не активна, т. е. соответствующий ген выключен (репрессирован). Однако, если эту бактерию культивировать в среде с очень низкой концентрацией ионов К+, то происходит экспрессия гена и транспортная система начинает функционировать. [c.360]


    Наличие кооперативных взаимодействий можно также определить по изменению свойств ряда гомологичных олигосахаридов с длиной цепи, большей или меньшей критического порога существования упорядоченной конформации, что было продемонстрировано при изучении способности олигогалактуронатов и олигогулу-ронатов связывать ионы кальция [28]. Для этих олигосахаридов продемонстрирована четкая сигмоидная зависимость увеличения сродства к ионам кальция от длины цепи выше и ниже соответствующей длины цепи способность к связыванию изменялась постепенно. [c.295]

    Тропонин-глобулярный белок, открытый С. Эбаси в 1963 г. его мол. масса 80000. В скелетных мышцах взрослых животных и человека тропонин (Тн) составляет лишь около 2% от всех миофибриллярных белков. В его состав входят три субъединицы (Тн-1, Тн-С, Тн-Т). Тн-1 (ингибирующий) может ингибировать АТФазную активность, ТН-С (кальцийсвязывающий) обладает значительным сродством к ионам кальция, Тн-Т (тропомиозин-связывающий) обеспечивает связь с тропомиозином. Тропонин, соединяясь с тропомиозином, образует комплекс, названный нативным тропомиозином. Этот комплекс прикрепляется к актиновым филаментам и придает актомиозину скелетных мышц позвоночных чувствительность к ионам Са (рис. 20.6). [c.650]

    Замена монофункционального катионообменника полистирол-ДВБ типа на сильнокислотный фенолформальдегидный катиоиообменник значительно повышает сродство к ионам цезия. Последние, особенно в щелочной среде, образуют достаточно прочные комплексы с фенольными группами смолы, что видно из данных табл. 5.4. При разделении пары s—Rb фактор разделения а для поликонденсационных смол Duolite С-3 и КУ-1 выше, чем для смолы Dowex 50. Данные табл. 5.4 показывают также влияние добавки метанола на качество разделения пар щелочных металлов. [c.157]

    Комплексные ферроцианиды цинка, кобальта, никеля, молибдена, ванадия и вольфрама также проявляют высокую селективность к ионам цезня [19-24]. По аналогии с другими неорганическими ионообменниками их селективность повышается в ряду Li < Na < К < Rb s. Так как сродство к ионам s у некоторых неорганических ионообменников чрезвычайно велико, s очень трудно элюировать из обменника. В этом случае в качестве элюентов используют концентрированные растворы нитратов аммония, серебра или ртути(П). Если количественное элюирование цезия этими растворами невозможно, рекомендуется проводить химическое или термическое разложение обменника. Цезий не поглощается Th[Fe( N)g] и Zr[Fe( N)g] и лишь слабо сорбируется на (ThO)2[Fe( N)e]. [c.158]

    Скогсайд [115] описал полистирольное производное, обладающее повышенным сродством к ионам калия. Многие исследователи пытались синтезировать иониты с хелатными свойствами. Среди ионитов этого типа, исследованных Грегором с сотрудниками [48], наиболее перспективным является ионит на основе ж-фениленди-глицина, формальдегида и вещества, образующего поперечные связи. Этот ионит обладает повышенной селективностью по отношению к ионам некоторых переходных элементов. Аналогичные иониты были получены Пеппером с сотрудниками [90] из хлорметилирован-ного сополимера стирола и дивинилбензола. Блазиус и Олбрих [6] получили смолу с хелатными свойствами поликонденсацией л-фени-лендиаминтетрауксусной кислоты с резорцином и формальдегидом. Емкость этого ионита около 0,5 мг-экв/г. Такие иониты использовались для аналитического отделения переходных металлов от щелочноземельных металлов. Сообщалось также об успешном разделении кобальта и никеля методом хроматографического элюирования. С помощью диаллилфосфатного комплексообразующего ионита, описанного Кеннеди с сотрудниками [66], удалось отделить бериллий от многовалентных катионов (гл. 15). [c.35]

    Растущее у нас на подоконниках растение алоэ известно своим применением для ускорения заживления ран. Действительно, сок алоэ содержит вещества, способствующие процессу регенерации. Наиболее активен из них горький гликозид алоэнин 3.61. В этом соединении поликетидная боковая цепь свернулась в а-пироновое кольцо. В боковых цепях фенольных антибиотиков нередки фурановые и пирановые циклы подобно тому, как это имеет место в молекуле лазалоцида 3.62. Этот антибиотик нашел применение в животноводстве для борьбы с паразитирующими организмами кокцидиями. Ценность его для животноводства повышается еще тем, что он обладает анаболическими свойствами. Для науки лазалоцид интересен способностью образовывать комплексы с ионами щелочных и щелочноземельных металлов, причем особенно велико его сродство к иону Ва +. [c.303]

    Было установлено, что натриевосиликатные стекла, являющиеся разновидностью известково-натриевого стекла, содержат SiO--oбмeн-ные центры, с сильным электростатическим полем и большим сродством к ионам водорода. В то же время натриевоалюмосиликатные стекла обладают А1081 -центрами с менее сильным электростатическим полем и заметным сродством к катионам, а не к протонам. [c.381]

    Жидкий ионообменный мембранный электрод разработан и для определения активности иона калия. Он очень похож по конструкции на кальцийселективный в нем используется в качестве жидкого ионита разбавленный раствор валиномицина в дифениловом эфире. Как показано на рис. 11-7, молекула валиномицина (антибиотик) представляет собой незаряженную циклическую макромолекулу с высоким сродством к иону калия (но не к иону натрия). Селективность этого электрода к К по сравнению с селективностью к N3+ составляет около 13 000 к 1 и для К+ по сравнению с Са + или Mg2+ лучше, чем 5000 к 1. Электродная функция подчиняется уравнению Нернста в интервале активностей иона калия от 10 до 0,1 М. Таким образом, валиномициновый электрод гораздо лучше любого доступного стеклянного мембранного электрода для определения калия в моче, сыворотке, почечных диализатах или в любой другой пробе, в которой присутствуют ощутимые количества иона натрия. [c.384]

    Цеолиты должны проявлять высокое сродство к ионным соединениям, таким, как соли, и последние должны легко окклюдироваться в цеолитных полостях, если катионы и анионы соли смогут разместиться во внутрикристаллических пустотах таким образом, чтобы избежать чрезмерного отталкивания ионов с одноименным зарядом. [c.400]

    В катионитах карбоксильного типа способные к обмену атомы водорода связаны в ионогенных группах ковалентно, в то время как связь ионов многих металлов (в частности, щелочных) с этими группами может в первом приближении рассматриваться как электровалентпая. Совершенно ясно поэтому, что катиониты карбоксильного типа имеют значительно большее сродство к протонам, чем к другим ионам. Шкала селективности ионов щелочных металлов на карбоксильных и фосфониевых катионитах противоположна шкале селективности тех же металлов на сульфокатионитах [26, 27, 52]. Так, литий поглощается лучше, чем калий, а натрий занимает промежуточное положение. Карбоксильные катионы имеют сравнительно высокое сродство к ионам щелочноземельных металлов [c.69]

    В конце первого раздела сделано заключение о том, что в реакциях гетеролитического водородного обмена участвуют только водородные кислоты и основания. В то же время факты, изложенные на стр. 42, говорят об исключительно высокой каталитической активности при дейтерообмене растворов бромистого алюминия в жидком бролшстом дейтерии и растворов фтористого бора в жидком фтористом дейтерии, т. е. апротонных кдслотонодобных веществ. Однако здесь нет противоречия. В тройных системах, состоящих из углеводорода, галогенида и галоидоводорода, образуются комплексы вследствие того, что координационно-ненасыщенный галогенпд обладает сродством к иону галоида. При этом поляризуется связь между атомом галоида и дейтерия (или водорода) в молекуле галоидоводорода [c.63]


Смотреть страницы где упоминается термин Сродство к иону: [c.216]    [c.404]    [c.175]    [c.187]    [c.376]    [c.163]    [c.249]    [c.93]    [c.319]    [c.174]    [c.583]    [c.583]    [c.583]    [c.583]    [c.583]    [c.583]    [c.583]    [c.583]    [c.223]    [c.599]   
Физические методы исследования в химии 1987 (1987) -- [ c.52 ]




ПОИСК





Смотрите так же термины и статьи:

Сродство



© 2024 chem21.info Реклама на сайте