Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Эластомеры высокоэластическом состояни

    Уравнения (2) и (3) лежат в основе всех современных представлений о высокоэластическом состоянии полимеров. Они позволили объяснить важнейшие черты высокоэластической деформации — малое значение (0,1 10 МПа) модуля Юнга резин, рост его с повышением температуры и с ростом степени сшивания эластомеров. [c.48]


    К эластомерам относятся каучуки и резины. Термином каучук принято обозначать эластомер, состоящий из длинных гибких макромолекул, которые могут перемещаться друг относительно друга при повышении температуры или при действии механических напряжений. Для каучуков характерно аморфное состояние, однако при охлаждении или при растяжении они способны кристаллизоваться. Рабочим физическим состоянием каучуков является высокоэластическое состояние (17.2.1). При этом, чем шире интервал эластичности АТ = Тт Тс, тем обширнее температурная область, в которой каучуки могут использоваться в качестве эластомера. [c.424]

    Примечательно, что энергия активации вязкого течения исследованных эластомеров совпадает с энергией активации Я-процессов медленной стадии физической релаксации. Например, для сшитого бутадиен-стирольного каучука энергия активации процессов вязкого течения и разрушения в высокоэластическом состоянии и процесса медленной стадии физической релаксации совпадают (54 кДж/моль). По-видимому, механизмы процессов медленной стадии физической релаксации, разрушения и вязкого течения имеют аналогичную природу, связанную с процессом перестройки надмолекулярной организации. Влияние напряжения на скорость вязкого течения связано именно с этой перестройкой и с обратимым разрушением микроблоков, тогда как кинетической единицей процесса вязкого течения является сегмент полимерной цепи (см. сноску на стр. 48). На этом основана наша концепция вязкого течения, изложенная в гл. V. [c.64]

    Время жизни надмолекулярных структур в эластомерах было измерено . Результаты опытов поясняются кривыми, приведенными на рис. I. 20. Предполагалось, что при разных температурах у линейного полимера в высокоэластическом состоянии формируется надмолекулярная флуктуационная структура различной степени развитости. Если образец выдержать длительное время (месяцы) при низкой температуре Т <.То, а затем быстро [c.65]

Рис. 1.20. Типичные зависимости скорости ползучести ё (на начальной стадии процесса) эластомера в высокоэластическом состоянии при некоторой температуре Тц от времени выдержки образцов t при этой температуре Рис. 1.20. <a href="/info/1657042">Типичные зависимости</a> <a href="/info/71642">скорости ползучести</a> ё (на <a href="/info/957801">начальной стадии процесса</a>) эластомера в <a href="/info/15755">высокоэластическом состоянии</a> при <a href="/info/1117919">некоторой температуре</a> Тц от <a href="/info/1838323">времени выдержки</a> образцов t при этой температуре

    Высокоэластическая деформация в наиболее чистом виде выражена у сеточных полимеров —сшитых эластомеров. Последние способны восстанавливать свою форму после разгрузки, как и упругие твердые тела. Но по другим свойствам они близки к жидкостям. В высокоэластическом состоянии полимеры подчиняются закону Паскаля. Жидкости и полимеры имеют аналогичную структуру в ближнем порядке. Поэтому их коэффициенты теплового расширения и сжимаемости близки и намного больше, чем у твердых тел. Температурные коэффициенты объемного расширения приблизительно равны 3,6-10-з к, для газов, 6-10- К для металлов, но для органических жидкостей и полимеров они близки к (3—6)-10 К- коэффициенты сжимаемости равны 10 (МПа) для воздуха у поверхности земли, 10 для металлов, но для органических жидкостей и полимеров они близки между собой и на два порядка отличаются от металлов (10 и 0,5-10" (МПа) ). [c.61]

    В гл. 3 рассмотрено одно из важнейших в физике полимеров приложений термодинамики к полимерам в высокоэластическом состоянии. Термодинамические соотношения применимы к равновесной деформации сшитых эластомеров (полимерных сеток). Из [c.82]

    При малых напряжениях в высокоэластическом состоянии проявляется процесс, напоминающий явление вынужденной эластичности, так как при некотором критическом напряжении происходит разрушение вторичных узлов пространственной сетки и изменяется сопротивление эластомера деформированию. Этот релаксационный процесс объясняется существованием микрообластей, образующих со свободными цепями пространственной сетки дополнительные вторичные узлы нехимического происхождения, которые распадаются при достижении критического напряжения. [c.141]

    Собственно, типичный разрыв полимера наблюдается только в области V, а при более высоких температурах наблюдаются нелинейные деформационные эффекты — потеря устойчивости процесса деформации в месте образования сужения и вязкое течение. Особенности деформации и разрыва полимера при Т>Тц скорее относятся к области реологии полимеров, чем к физике прочности. Поэтому в дальнейшем будет обсуждаться процесс разрушения только в высокоэластическом состоянии, главным образом на примере несшитых и сшитых эластомеров. [c.334]

    Как известно [7], эластомеры характеризуются двумя основными релаксационными механизмами. Один из них, а-процесс (рис. 12.6), связан с молекулярной подвижностью свободных сегментов и цепей, не входящих в микроблоки надмолекулярных структур. Он ответствен за релаксационные процессы в переходной области от стеклообразного к высокоэластическому состоянию и за быструю высокоэластическую деформацию выше температуры стеклования. Другой механизм относится к Я--процессам (>,1, 2 и Хз), наблюдаемым на высокоэластическом плато и ответственным за медленную высокоэластическую деформацию. Эти релаксационные механизмы объясняются термофлуктуационной природой различных типов микроблоков (упорядоченных микрообластей) в эластомерах. Процессы Я-релаксации характеризуются различными временами релаксации с одной и той же энергией активации. В сшитых эластомерах кроме а- и Я-процессов при высоких температурах наблюдается химическая релаксация (6-процесс), а в полярных эластоме- [c.341]

    Так как полимерные материалы часто используются в узлах трения и в качестве покрытий, большое практическое значение имеет изучение механизмов их трения и износа. Процессы трения низкомолекулярных твердых тел и полимеров при разных температурах имеют и общие черты, и существенные отличия. Наиболее специфично проявляется трение у полимеров, находящихся в высокоэластическом состоянии. Существенная зависимость характера изменения силы трения при разных скоростях скольжения свидетельствует о релаксационном характере этого процесса. Важное значение имеет правильный учет площади фактического контакта при изменении взаимного расположения трущихся поверхностей. Наиболее резкие изменения трение претерпевает в областях кинетических (стеклование, размягчение) и фазовых (кристаллизация, плавление) переходов, что связано с изменением его механизма. Трение полимеров всегда связано с их износом. При этом износ может рассматриваться как процесс, характеризующий усталость поверхностных слоев полимеров (аналогично тому, как длительное разрушение характеризует объемную усталость). Механизмы износа твердых полимеров и эластомеров, как и характер их. внешнего проявления, существенно отличаются. [c.384]

    Перейдем к термодинамическому анализу процесса деформации полимера, находящегося в высокоэластическом состоянии,— эластомера. Пусть эластомер длиной /о под действием напряжения [ удлинился на величину d/. Исключим явления вязкоупругости, обеспечивая действующему напряжению достаточное время для достижения равновесной в данных условиях деформации. [c.107]


    Мы начинаем знакомство с релаксационными явлениями в полимерах с эластомеров, поскольку именно в высокоэластическом состоянии многие особенности релаксации в полимерах проявляются особенно заметно. [c.118]

    Температура, при которой полимер при охлаждении переходит из высокоэластического или вязкотекучего состояния в стеклообразное, называется температурой стеклования. Полимеры в стеклообразном состоянии отличаются рядом особенностей релаксационного поведения и комплекса механических свойств от полимеров в высокоэластическом состоянии. Это становится очевидным при сравнении свойств натурального каучука (типичный эластомер) и поли-метилметакрилата, часто в обиходе называемого органическим стеклом. [c.142]

    Полимеры в высокоэластическом состоянии к моменту разрушения достигают значительной деформации. Это оказывает сильное влияние на механизм разрыва. На рис. 13.4 показано схематически, как в эластомере первоначальная трещина с острой вершиной затем при деформации постепенно расширяется (раскрывается), но не растет (рис. 13.4,6). Причина этого в низком модуле эластомера по сравнению с модулем хрупкого полимера при достаточно большой деформации, когда хрупкий полимер мог бы уже разрушиться, в эластомере накопленная механическая энергия еще невелика. Перенапряжение в вершине трещины обусловливает возникновение там дополнительной деформации. Перенапряжения при [c.198]

    Как отдельную группу полимерных соединений выделяют эластомеры, или каучуки. Эластомерами, или каучука-м и, называют материалы, находящиеся в высокоэластическом состоянии при нормальной температуре и сохраняющие это состояние в широком интервале температур. Например, высокоэластическое состояние присуще натуральному каучуку в диапазоне температур от —73 до 180—210° С, температурная область высокоэластичности 253—283° С. У кремнийорганического каучука высокоэластическое состояние наблюдается при температуре от —109 до 250° С. [c.26]

    Эластомеры (каучуки, резины, каучукоподобные полимеры) эксплуатируются в высокоэластическом состоянии, и температуры стеклования (Гс) или кристаллизации (Гкр) являются нижними границами их морозостойкости. Ниже этих температур исчезает эластичность и резко ухудшаются деформационные свойства. [c.157]

    Одномерное деформированное состояние данного конкретного образца резины можно характеризовать однозначно как параметрами F, L, так и обобщенными параметрами f, к, где f — условное напряжение, а А, — кратность растяжения (относительная длина). Однако, деформированное состояние сшитого эластомера как материала однозначно нельзя характеризовать величинами F, L из-за влияния на L теплового расширения резины. Поэтому в дальнейшем будут использованы параметры f, л, однозначно описывающие деформированное высокоэластическое состояние резины. В термодинамике газа, как известно, вместо F, L применяются также обобщенные сила и расстояние р и V. Из этих двух параметров независимым является один. [c.145]

    Мы рассмотрели одно из важнейших в физике полимеров приложений термодинамики к полимерам в высокоэластическом состоянии. Термодинамические соотношения применимы к равновесной деформации сшитых эластомеров (гибкоцепных полимерных сеток). Из сравнения термодинамических соотношений с экспериментальными данными следует, что природа упругости полимерных сеток выше температуры стеклования энтропийная, а модули упругости имеют малые значения. При этом деформации сшитого эластомера характеризуются большими значениями (сотни процентов). Таким образом, отличие упругости полимеров в высокоэластическом состоянии от упругости твердых тел существенно. Энтропийная природа упругости полимеров приводит в высокоэластическом состоянии к. тепловым эффектам при деформациях, противоположным тем>. которые наблюдаются у обычных твердых тел. [c.153]

    В стеклообразном состоянии Еа Еи поэтому С,- 1. Для высокоэластического состояния лучше обоснованы другие модели, но из формулы (IX. 47) следует, что С = 1 (так как 1 < 2 = = Еос, для сшитых эластомеров). Для модели, предложенной автором [138], условие максимума при стекловании следующее  [c.219]

    На рис. 28 кривая 1 воспроизводит изменение модуля упругости для эластомеров. Примечательно, что в этом случае модуль упругости (сдвига) невелик в широком интервале температур и скачкообразно возрастает при температуре стеклования (—50 °С), т. е. при переходе от высокоэластического состояния к стеклообразному. Кривые 3 4 характерны для частично-кристаллических полимеров (здесь значение модуля на три порядка больше и понижается только по достижении температуры плавления). На соответствующих кривых для механического фактора потерь с1 это выглядит следующим образом (см. рис. 28). Переход в стеклообразное состояние заметен при хорошо выраженной механической абсорбции (кривая У). На кривых для кристаллических полимеров (3 и 4) видны два абсорбционных максимума. Первый максимум наблюдается яри температурах—100°С для полиэтилена и при 0°С для изотак-гического полипропилена и соответствует температурам стеклова- [c.100]

    Особенности условий переработки смесей каучуков с ингредиентами в отличие от условий переработки термопластов (безразлично— кристаллических или аморфных) связаны с наличием в резиновых смесях серы и ускорительной группы, необходимых для вулканизации. Верхний температурный предел переработки смесей ограничен ПО—П5°С. Непредельность молекул, с одной стороны, позволяет вулканизовать каучуки, а с другой — одновременно повышает их склонность к деструкции. Каучуки перерабатывают при температурах, соответствующих области перехода от высокоэластического состояния в вязкотекучее [17—19]. Для эластомеров эта область, как правило, составляет сотни градусов, в то время как для аморфных предельных полимеров, таких как полистирол или поливинилхлорид, по-видимому, составляет не более 50—100°С, а для кристаллизующихся — полиэтилена, полиамидов, полиэфиров — практически отсутствует (не более 10— 20 °С). [c.10]

    Согласно Г. М. Бартеневу [29(], при скольжении резиновой смеси (или другого эластомера, который находится в высокоэластическом состоянии) с небольшой (менее 10 мм/мин) скоростью по гладкой полированной стальной поверхности трение связано главным образом с механическими потерями при разрушении и восстановлении адгезионной связи в поверхностном мономолекулярном слое. Механические (гистерезисные) потери в объемах шероховатостей самого полимера здесь несущественны. При этом силу трения Ра можно определить по уравнению  [c.81]

    Рассмотренные теории оставляют без внимания вопрос о межмо лекулярном взаимодействии, которое в конденсированной системе макромолекул, какой является высокоэластический полимер, очень велико. Под влиянием межмолекулярных сил может произойти агрегация цепных молекул, вызывающая возникновение более крупных структурных образований — пачек, в которых поведение макромолекул будет иным, чем в изолированном состоянии. Далее, высота потенциальных барьеров изменяется во время самого процесса деформации, так как она зависит не только от взаимного отталкивания или притяжения групп, находящихся в одной н той же макромолекуле, но и от межмолекулярного взаимодействия, меняющегося во время перегруппировки цепей или их частей под влиянием приложенной механической нагрузки. Без учета межмолекулярного взаимодействия невозможно понять, каким образом осуществляется переход от высокоэластического состояния к стеклообразному или вязкотекучему и почему требуется конечный промежуток времени для превращения одних конформаций в другие. Полиэтилен, у которого межмолекулярное взаимодействие достаточно сильное вследствие кристаллизации, представляет собой сравнительно жесткий материал, в то время как сополимер этилена с пропиленом, где это взаимодействие проявляется значительно слабее, типичный эластомер. [c.380]

    Если линейный полимер находится в кристаллическом состоянии, то ниже температуры плавления Гпл (или кристаллизации Тк) он будет твердым, обладая при этом различной жесткостью ниже и выше температуры стеклования Тс (кривая типа 3 на рис. 1.15). Это связано с тем, что некристал лическая (аморфная) часть полимера ниже Тс находится в стеклообразном, а выше — в высокоэластическом состоянии. В тех случаях, когда полимер слабо закристаллизован, выше Тс он ведет себя в отношении деформационных свойств как некристаллический полимер или как эластомер повышенной жесткости. [c.33]

    Релаксационные процессы в полимерах определяют их вязко-упругие свойства и влияют на прочностные свойства этих материалов. Влияние релаксационных процессов на разрушение полимеров в высокоэластическом состоянии более существенно, чем в твердом [63]. В связи с этим понять природу процессов разрушения эластомеров и физический смысл наблюдаемых закономерностей можно на пути выяснения прежде всего фундаментального вопроса о взаимосвязи релаксационных процессов с процессом разрушения. Решение этого вопроса было осуществлено в работах [12.17 12.19], где проведены широкие исследования температурной зависимости комплекса характеристик релаксации напряжения, вязкости, процессов разрушения (долговечности и разрывного напряжения). Для исследований были выбраны несшитые и сшитые неполярные эластомеры бутадиен-стирольный СКС-30 (Гс = —58° С) и бутадиен-метилстирольный СКМС-10 (Гс=—72°С), а также полярные бутадиен-нитрильные эластомеры. Условия опытов охватывали широкий диапазон напряжений и деформаций растяжения и сдвига (несколько порядков величины). Исследования физических свойств проводились для каждого эластомера на образцах, полученных при одних и тех же технических режимах приготовления образцов (переработка и вулканизация). [c.341]

    При переходе из высокоэластического состояния в стеклообразное происходит замена одного молекулярного механизма трения другим. В стеклообразном состоянии сила трения образуется из вкладов взаимосвязанных адгезионной и объемно-механической-составляющих. Чем больше адгезионная составляющая, тем больше и объемно-механические потери, которые связаны с внутренним трением в самом полимере. Низкотемпературный максимум при температуре Гм2 существенно связан с механическими потерями в самом полимере, так как при многократных деформациях при этой же температуре наблюдается максимум потерь, связанный с замораживанием подвижности малых участков полимерных цепей. При исследовании фрикционных свойств эластомеров в атмосфере при повышенных температурах на кривой р= Т) (рис. 13.12) появляется еще высокотемпературный максимум, связанный с ин--тенсификацией процессов окисления поверхностных слоев. [c.376]

    При низкой температуре полимер находится в стеклообразном состоянии (рис. XIII. 1, область /), в котором полимер ведет себя как упругое твердое тело. В этом состоянии отсутствует движение как всей молекулы, так и отдельных звеньев, а проявляются лишь колебания атомов около положения равновесия. При повы-щении температуры полимер переходит в высокоэластическое состояние, свойственное только высокомолекулярным соединениям (рис. XIII. 1, область //). Вещество в высокоэластическом состоянии способно к значительным обратимым деформациям, что обусловлено подвижностью звеньев и соответственно гибкостью макромолекул. Перемещение звеньев происходит не мгновенно, поэтому деформации полимеров в высокоэластическом состоянии имеют релаксационную природу, т. е. характеризуются временем установления равновесия. Высокоэластическое состояние полимеров проявляется в интервале от температуры стеклования (Гст) до температуры текучести (7т) (рис. XIII.1, область //). Если температурный интервал Та—Гт достаточно щирок и захватывает обычные температуры, то такие полимеры называют эластиками или эластомерами, или каучуками. Полимеры с узким интервалом температур —Т-,, смещенным в область повышенных температур, называют пластиками или плас-томерами. При обычных температурах пластики находятся в [c.359]

    Д. измеряют в относит, единицах. Для твердых тел, в к-рых доминируют упругие Д., в области достаточно малых Д. (порядка 0,1) вьтолняется Гука закон. Для эластомеров характерны большие упругие Д., наз. высокоэластическими (см. Высокоэластическое состояние) они достигают 8-12 единиц пластич. Д. могут быть неограниченно велики. [c.31]

    Р. эластомеров и твердых полимерных материалов основывается на выражении для упругой энергии У, накапливаемой материалом при его деформировании, к-рая выражается через инварианты тензора деформации. Исходя из выражения для Ц находят зависимость напряжения а от де( рмации е (или степени растяжения у) для любых геом. схем нагружения. Если предполагается чисто энтропийный механизм высокоэластичности (см. Высокоэластическое состояние), зависимость а(-/) для одноосного растяжения имеет вид  [c.248]

    ЭЛАСТОМЕРЫ, полимеры и материалы на их основе, обладающие во всем диапазоне их эксплуатации высокоэластичными св-вами, т. е. способностью к большим (до сотен процентов) обратимым деформациям (см. Высокоэластическое состояние). Типичные Э.- разл. каучуки и резины. ЭЛЕКТРЁТНО-ТЕРМЙЧЕСКИЙ АНАЛИЗ, то же, что термодеполяризационный анализ. [c.422]

    Эластомеры — линейные ити разветвленные полимеры илн олигомеры, которые перерабатываются в вязкотек чем состоя НИИ, затем сшиваются в трехмерную сетку и эксплуатируются в высокоэластическом состоянии. Несшитые эластомеры называют каучукачи, а сшитые чаще всего резинами. [c.232]

    Сжимаемость полимеров в этом состоянии ииже, чем у жидкостей, но выше, чем у твердых тел, так, для жидкости [и-гексана) сжимаемость составляет 1,6-10 Па , для эластомеров а высокозластическом состоянии — Па , а для твердых тел (желе.ю)—7-10 Па Для высокоэластического состояния характерен ближний порядок во взаи.мном расположении макромолекул, но существуют надмолекулярные образования различной степени упорядочещюсти [c.241]

    Химические узлы между линейными макромолекула.мн препятствуют их скольжению под действием механических нагрузок и. следовательно, способствуют повышению прочности. Чем больше таких узлов, тем выше напряжение и меньше удлинение прн разрыве. В наибольшей степени влияние сстки химических связей на прочность проявляется при разрушении в высокоэластическом состоянии, т. е. для эластомеров. Зависн.мость прочностн от степенн сшивания в этом случае описывается кривой с максимумом при оптимальном числе узлов п Ветичина Пс"" определяется гибкостью полимера и молекулярной массой мсха[ 1 ческого сегмента Мег. Если молекулярная масса между [c.346]

    Переход от высокоэластического состояния полимеров к стеклообразному происходит в определенном температурном интервале, среднюю температуру которого принято называть температурой стеклования. В процессе перехода от эластомера к полимерному стеклу наблюдается постепенная фиксация отдельных звеньев цепных молекул Связи, возникающие вследствие ослабления теплового движения, имеют флуктуационный характер и не являются постоянно существующими. За-стекловывание полимера происходит в том случае, если число фиксированных звеньев становится столь большим, что расстояния между этими звеньями будут меньше, чем длина сегмента молекулы, и гибкость цепной молекулы уже не сможет проявиться . Теоретически возможны два механизма застекловывания, обуслоплен-ные либо увеличением взаимодействия мел<ду молекулами, либо возрастанием жесткости каждой отдельной молекулы полимера [c.117]

    Метод термостимулированной ползучести, или метод определения восстанавливаемости. - метод, близкий к ТМА по характеру получаемых результатов, - заключается в определении способности образца восстанавливать свои размеры после деформации и характери- зует релаксационные свойства эластомеров. Если образец деформиро- вать путем растяжения или сжатия при некоторой температуре То, соответствующей высокоэластическому состоянию (например, при [c.374]

    Электрические свойства Г291. Специфика изучения электрических свойств эластомеров связана с тем, что при эксплуатации они нахо- дятся в высокоэластическом состоянии, и поэтому основной интерес представляют их электрические характеристики выше температуры стеклования, тогда как при исследовании других полимеров основное внимание уделяется их электрическим свойствам в стеклообразном состоянии. Другая особенность - высокое содержание в резинах тех- нического углерода, существенно изменяющего как природу электри-  [c.550]

    Пластификация - технологический прием, используемый для снижения хрупкости полимеров при эксплуатации изделий и улучшения пере-рабатываемости полимеров. При переработке гибкоцепных полимеров важно снижение (технологическая пластификация). Для эксплуатации изделий из эластомеров важно расширение области высокоэластического состояния в результате снижения (эксплуатационная пластификация). [c.169]

    Обычно закон деформации (IX. 2) соблюдается при больших застяжениях, а при малых справедливо соотношение (IX. 1). Нелинейная упругость особенно характерна для полимеров в высокоэластическом состоянии, так как реализуемые вплоть до разрыва или предела текучести деформации составляют десятки и даже сотни процентов для сшитых эластомеров. [c.206]

    Природа релаксирующего напряжения и деформации ползучести может быть разной в зависимости от релаксационного состояния. В твердом полимере в стеклообразном состоянии упругий элемент изображает упругую деформацию synp, а в высокоэластическом состоянии (эластомеры) — высокоэластическую деформацию 8вэл. [c.216]

    При температурах ниже Тст, особенно у полимеров с жесткими цепями и сильным мел<молекулярньш взаимодействием, пачки, сохраняя свою индивидуальность, агрегируются в аморфные фибриллы или дендриты (рис. 121,о) у эластомеров в высокоэластическом состоянии пачки менее устойчивы и, будучи очень подвижными, сливаются друг с другом с образованием полосатых структур (рнс. 121,6). [c.436]

    Эластомеры — каучуки и резины состоят из гибких макромолекул, связанных между собой поперечными связями и образующих нежесткую, молекулярную сетку. От-пластмасс, рассмотренных в гл. III, их отличает высокоэластическое состояние, сохраняющееся во всем интервале температур эксплуатации. [c.144]


Смотреть страницы где упоминается термин Эластомеры высокоэластическом состояни: [c.300]    [c.300]    [c.83]    [c.128]    [c.168]    [c.333]    [c.348]    [c.242]    [c.113]   
Разрушение эластомеров в условиях, характерных для эксплуатации (1980) -- [ c.40 ]




ПОИСК





Смотрите так же термины и статьи:

Состояние высокоэластическое

Эластомеры



© 2025 chem21.info Реклама на сайте