Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Сополимеры стабилизация

    Технологический процесс производства состоит из следующих стадий получение растворов триоксана, диоксолана и катализатора в экстракционном бензине, сополимеризация триоксана с диоксоланом, промывка нестабилизированного сополимера, стабилизация, промывка, сушка и грануляция стабилизированного сополимера, регенерация маточного и промывных растворов. [c.49]

    Технологический процесс производства состоит из следующих стадий получение растворов триоксана, диоксолана и катализатора в экстракционном бензине, сополимеризация триоксана с диоксоланом, промывка нестабилизированного сополимера, стабилизация, промывка, сушка и грануляция стабилизированного сополимера, регенерация маточного и промывных растворов. После термообработки в вакууме при температуре выше точки плавления (200—220 °С) получают термостойкий (до 270 °С) сополимер. [c.297]


    Измерения изменений внутренних напряжений в волокне из сополимера с 4,5% метилметакрилата показали, что в начальный период напряжения проявляются слабо (0,12-0,15 Тоо), далее наблюдается ускорение и затем стабилизация, за которой следует некоторое падение. [c.582]

    Содержание кислорода в стабилизированном волокне из гомополимера ПАН зависит от числа денье. Однородное окисление достигается при применении волокон с 0,7-1,5 денье. Введение сополимеров выравнивает окисление по сечению волокна. Увеличение времени стабилизации (при 215 С) снижает выделение тепла при последующей термообработке (рис. 9-40). Это способствует уменьшению количества удаляемых высокомолекулярных соединений при пиролизе и соответственно снижению усадки. [c.582]

    При введении сополимеров содержание кислорода в волокне после стабилизации ограничивается 10-12% (масс.). Это способствует повышению прочности при растяжении УВ и уменьшению времени стабилизации (рис. 9-42). [c.584]

    Характер зависимости микроструктуры от некоторых технологических параметров получения углеродных волокон из ПАН-волокна приведен в работе [137]. Исследованы два типа волокон из сополимера ПАН марки "Куртель", полученных методом мокрого прядения и имеющих круглое сечение, и "Орлон", полученные методом сухого прядения с поперечным сечением типа "Собачья кость". Волокна стабилизировали в фиксированном состоянии, окисляя на воздухе при 200-220 °С. Карбонизацию производили, нагревая волокна в токе аргона до 1000 °С, а затем быстро - до предельной температуры, при которой давали выдержку в течение 10 мин. При стабилизации во время окисления образуется лестничный полимер и закладывается ориентация наружного слоя. [c.237]

    По стойкости к нагреванию, действию кислорода, озона, УФ и ионизирующего излучения В. к, практически не отличаются от бутадиен-стирольных и бутадиен-нитрильных сополимеров. Для стабилизации В к. используют обычные аминные или (и) фенольные антиоксиданты (1-2% от массы каучука). [c.372]

    Момент времени, начиная с которого знак второй производной вязкости по времени меняется на минус по условию (8), является показателем начала стабилизации системы на ее пути к предельной вязкости. Естественно, при этом вторая производная также стремится к нулю при достижении Например, при модифицировании стандартного окисленного битума БНД 60/90 двумя промышленными эластомерами — этиленпропиленовым сополимером СКЭПТ (третий мономер — дициклопентадиен) и бутадиен-стирольным термоэластопластом ДСТ-ЗОр-01 эффективная динамическая вязкость Т1 реакционной смеси определяется по ходу диспергирования от начального момента времени /о через равные дискретные промежутки времени 1, [c.124]


    Водные растворы, содержащие от 1 до 8% (масс.) ПВС, пригодны для стабилизации золей металлов (например, золота и серебра). Адсорбируясь на поверхности. коллоидных частиц галогенидов серебра, ПВС препятствует росту кристаллов этих солей. Это свойство ПВС используется в фотографии для получения более тонких эмульсий галогенидов серебра, чем при применении желатина [104, с. 114]. В скоростных сухих фотографических процессах, обеспечивающих по лучение изображения без применения растворов, в качестве связующего стабилизирующего лака может быть использован привитой сополимер ПВС и мет-акриловой кислоты [а. с. СССР 368578]. [c.160]

    Поскольку состав сополимера зависит от способности мономера полимеризоваться по данному механизму, существует большое число исследований, посвященных установлению взаимосвязи констант сополимеризации со строением мономера. Установлен ряд полуэмпирических зависимостей между резонансной стабилизацией растущего конца цепи, электронной плотностью двойной связи ненасыщенного соединения и константами сополимеризации [68, 74—76]. Здесь эти зависимости не рассматриваются. [c.172]

    Стирол очищают от ингибитора (см. опыт 3-01) и перегоняют в токе азота в специальный приемник (см. раздел 2.1.2). Бутадиен конденсируют из баллона в охлаждаемую ловушку, заполненную азотом, и помещают в смесь сухого льда с метанолом. Полимеризацию проводят в специальном сосуде емкостью 500 мл, испытанном на давление 25 атм. Сосуд заполняют азотом, затем в него наливают раствор 5 г олеата натрия (или лаурилсульфата натрия) в 200 мл кипяченой воды, 0,5 г додецилмеркаптана (используемого в качестве регулятора молекулярной массы) и 0,25 г (0,93 ммоля) персульфата калия. Содержимое перемешивают встряхиванием сосуда до полного растворения всех компонентов. Доводят pH раствора до 10—10,5 добавлением разбавленного раствора ЫаОН. В сосуд под азотом заливают 30 г (0,29 моля) стирола и 70 г (1,30 моля) бутадиена и плотно закрывают. Бутадиен переливают в полимеризационный сосуд следующим образом. Сосуд, погруженный в охлаждающую баню со смесью сухого льда с метанолом, ставят на весы (под тягой) и из ловушки быстро наливают бутадиен. Избыток бутадиена испаряют. Закрытый сосуд помещают за экран и нагревают до комнатной температуры. Сосуд заворачивают в ткань и интенсивно встряхивают для получения эмульсии. Полимеризацию проводят при 50 °С. Для этого сосуд ставят на термостатируемую переворачивающую качалку, а если ее нет, то его интенсивно встряхивают примерно через каждый час. Продолжительность реакции 15 ч (обязательно использовать защитный экран). Затем сосуд охлаждают вначале до комнатной температуры, а затем до О °С (в ледяной воде). Сосуд повторно взвешивают для проверки утечки бутадиена. Полученный латекс под тягой медленно выливают при перемешивании в 500 мл этилового спирта, содержащего 2 г Ы-фенил-р-нафтиламина для стабилизации полученного сополимера против окисления. Непрореагировавший бутадиен испаряется сополимер выпадает в виде слабо слипающихся хлопьев. Осадок фильтруют и сушат в вакуумном сушильном шкафу при 50—70 °С в течение 1—2 сут. Состав сополимера можно определить аналитически по содержанию двойных связей либо спектроскопически по содержанию стирола (см. раздел 2.3.9) конфигурацию звеньев бутадиена в цепи сополимера определяют по ИК-спектрам (см. опыт 3-30). Сополимер можно превратить в нерастворимый высокоэластичный продукт вулканизацией (см. опыт 5-10). [c.179]

    Более актуальна проблема стабилизации ударопрочного полистирола, стабильность которого меньше стабильности полистирола и сополимеров стирола. В настоящее время промышленность выпускает ударопрочный полистирол (УПМ и УПС) термо- или термо- и светостабилизированные. [c.365]

    Стабилизация полиформальдегида и сополимеров триоксана с диоксоланом [c.399]

    Обозначение марки ПП состоит из пяти цифр первая цифра 2 или О указывает на давление, при котором происходит процесс синтеза, соответственно низкое или средне вторая цифра указывает на вид материала 1 — полимер, 2 — сополимер. Три последующие цифры означают десятикратное значение показателя текучести расплава. В обозначении композиции через тире указывается номер рецептуры стабилизации и далее, через запятую цвет и число рецептуры окрашивания. Например, марка 21180-16, Т 20 обозначает ПП, полученный на металлоорганических катализаторах при низком давлении, ПТР составляет 18 г/10 мин, рецептура добавки №16 — антикоррозионная, материал содержит 20 % талька. [c.35]

    Технологический процесс производства состоит из следующих стадий получения растворов триоксана, диоксолана и катализатора в экстракционном бензине, сополимеризации триоксана с диок-солаиом, промывки нестабилизированного сополимера, стабилизации, промывки, сушки и грануляции стабилизированного сополимера, регенерации маточного и промывных растворов (рис. 83). Растворы триоксана (50%-ный), диоксолана (10%-ный) и катализатора (3%-ный) через мерники 1, 2 и 3 подают на сополимеризацию в полимеризатор 5. Процесс протекает при 65°С и остаточном давлении 65—78 кПа. Степень конверсии триоксана 35% и более (в зависимости от типа катализатора). [c.246]


    Сополимеризацию можно проводить так же, как полимеризацию пропилена (см. рис. 69). При периодическом методе реакцию проводят в автоклаве, куда при —65 °С сначала вводят жидкий пропилен, а затем подают этилен под таким давлением, чтобы газ был нужного состава. Оба компонента могут быть растворены в гептане, циклогек-саие или бензоле. Компоненты катализатора подают отдельно в виде растворов в углеводородах. Полимеризация продолжается примерно 10—40 мпн, после чего ее прекращают добавкой спирта. Для удаления соединений ванадия и алюминия реакционную смесь обрабатывают кислотами. После очистки добавляют антиоксиданты для стабилизации сополимера. [c.313]

    По достижении заданной степени конверсии реакционная масса разбавляется бензином с целью охлаждения ее до 50—55 °С, Дополнительное разбавление массы бензином производится в аппарате 6, откуда суспензия насосом подается в мутильник 7, а затем в центрифугу 8. Отжатый маточный раствор поступает на регенерацию триоксана. Отмывка сополимера от непрореагировавшего триоксана и остатков катализатора производится в нескольких последовательно соединенных центрифугах и му-тильниках. Промывной раствор поступает противотоком. На последнюю промывку подается умягченная вода, нагретая до 70—80 °С. Паста сополимера из центрифуги 8 поступает в бункер 9, а затем шнеком подается в мутильник 10, в котором разбавляется умягченной водой. Суспензия сополимера насосом перекачивается в аппарат стабилизации 11. Остатки бензина удаляются отпаркой при 68— 70 °С, Бензин с водой конденсируется в холодильнике /2 и поступает на разделение. После удаления бензина производится термообработка сополимера по режиму  [c.50]

    Идея стабилизации полиизобутилена путем введения в его цепь винилароматических звеньев была перенесена и на полиалкилметакрилаты. Так, сополимеризацией алкилметакрилата со стиролом были получены вязкостные присадки, имеющие более высокую механическую и термическую стабильность по сравнению с полиалкилметакрилатом В равной молекулярной массы [174, с. 15]. С целью получения вязкостных присадок с повышенной стойкостью к деструкции проводят сополимеризацию алкилметакрилатов с а-олефинами [175]. В настоящее время из полиалк илметакрилат-ных вязкостных присадок применяют в основном сополимеры алкилметакрилатов с различными ненасыщенными соединениями. [c.143]

    Использование сополимеров ПАН с 4,5-6% метилметакрилата или 2% итаконовой кислоты снижает температуру окончания стабилизации (до 230 С) и скорость протекания процессов деструкции. Предполагается [9-77], что указанные добавки способствуют образованию [c.584]

    В заключение этого раздела следует отметить, что двухосновные кислоты находят разнообразное применение. Например, шаве-левая кислота используется в текстильной и деревообрабатывающей промышленности, ее применяют при полировке металлов, в качестве катализатора в реакциях поликонденсации (например, при получении фенолформальдегидных полимеров). Используется и как отвердитель при получении мочевиноформальдегидных композиций для укрепления грунтов при сооружении фундаментов. Производные малоновой кислоты, например ее эфиры, могут находить применение для стабилизации грунтов, что имеет большое значение для строительства. Остальные кислоты этого ряда служат в качестве пластификаторов в производстве пластмасс, высококачественных смазок и мономеров. В реакциях диенового синтеза, в производстве полиэфирных полимеров и различных сополимеров используются непредельные двухосновные кислоты. Малеиновая кислота применяется для синтеза некоторых ПАВ, а также в виде водного раствора аммониевых солей ее сополимера со стиролом или винилацета-том — для уплотнения кирпичной кладки, бетона и других строительных материалов. [c.164]

    Алфрей И Прайс [8] предположили существование электростатического взаимодействия мел<ду радикалами и мономерами, имеющими разную полярность. Они рекомендовали характеризовать каждый мономер двумя параметрами Q — мера активности мономера, зависящая от резонансной стабилизации радикала и мономера, и е — полярность мономера, зависящая от электроио-допорпых н электроно-акцепторных свойств (см. табл. 1.3). Для выбора пары мономеров, которые могут образовать чередующийся сополимер, можно воспользоваться параметром е. [c.12]

    На кафедре проводятся исследования по синтезу и изучению свойств синтетических неионных водорастворимых полимеров. Такие полимеры и гидрогели на их основе находят широкое применение в качестве флоку-лянтов для очистки сточных вод, для концентрирования и извлечения металлов, в качестве структурообразователей почв, в качестве плазмозаме-нителей, для стабилизации и очистки ферментов. Методом радикальной полимеризации синтезированы термоосаждаемые водорастворимые полимеры на основе винилкапролактама. Показано, что меняя природу со-мономера можно получать сополимеры с различной температурой фазового разделения., с различным конформационном состоянием макромолекул. При этом большое значение приобретает химическая природа растворителя. Способность к комплексообазованию таких полимеров позволило разработать способ получения гранулярного носителя и иммобилизации в него широкого спектра соединений, от пигментов до живых клеточных [c.115]

    СНз—СН(ОС4Нэ-шо)—] . Атактич. аморфный П. э. (мол. м. 10 —10 ) — вязкая жидк. или эластомер плотн. 0,91 г/см не раств. в воде, метаноле и этаноле, раств. в бензоле, толуоле, ацетоне, хлороформе требует стабилизации антиоксидантами. Получ. полимеризацией цнили.-ю-бутилового эфира на кислых кат. в массе или р-ре. Примен. основа клеев (оппанол С), липких лент и ярлыков загуститель смазочных масел сополимер с 70—80% винилхлорида — для приготовления лаков, стойких в морской воде. [c.457]

    СНг—СН(ОСНз)—]п. Атактич. аморфный П. э. (мол. м. 10 —10 )—вязкая жидк. плотн. 1,045 г/см Иц 1,4670 е 3,5, р 50 ГОм-м раств. в воде (выше 35°С выпадает в осадок), метаноле, толуоле, ацетоне, хлороформе требует стабилизации антиоксидантами. Получ. полимеризацией винилметилового эфира на кислом кат. в массе или р-ре. Пластификатор для клеев и лаков компонент клеев, липки лент и ярлыков стабилизатор эмульсий мономеров неионогенный коагулянт для латексов натурального и синт. каучуков чередующийся сополимер с малеиновым аигидридом — загуститель и суспендирующий агент в фармацевтич. пром-сти, защитный коллоид, пластификатор для типографских красок. [c.457]

    Б. применяют в произ-ве полиуретанов, полиэфиров (сополимеров с терефталевой к-той), эффективных пластификаторов для термопластов, у-бутнролактона как пластификаторы и увлажняющие агенты для желатины, целлофана, спец. сортов бумаги, табака. 1,3-Б.-также р-ритель эфирных масел и др. добавок в произ-ве моющих ср-в, паст, чернил и т.д. его борные эфиры-добавки к реактивным топливам для стабилизации, подавления роста микроорганизмов и нагарообразовання в двигателях (по зарубежным данным). [c.334]

    Для приготовления П обычно используют эмульсионный или микросуспензионный пастообразующий ПВХ (см. Поливинилхлорид) и винилхлорида сополимеры дисперсионной средой служат пластификаторы (40-150% от массы полимера), к-рые обычно применяют в произ-ве пластиката,-это диоктил- и дибутилфталаты, диоктиладипинат и др П содержат также термостабилизаторы, применяемые для стабилизации ПВХ. Высококачеств. товарные П. готовят из ПВХ со сравнительно однородным гранулометрич. составом (средний размер частиц 0,3-2,5 мкм). Иногда часть эмульсионного ПВХ (до 30%) заменяют на более дешевый суспензионный, состоящий из монолитных сферич. частиц размером 20-50 мкм (т наз. ПВХ-экстендер) В результате уменьшаются уд пов-сть порошка и необходимое для его смачивания кол-во пластификатора и увеличивается подвижность П. [c.561]

    Соиолимеры ТФЭ — ГФП, если их не подвергают дополнительной обработке, содержат термически неустойчивые карбоксильные концевые группы, образующиеся. на стадии инициирования нли обрыва цепей. В результате в процессе переработки (при температурах около 380°С) происходит выделение газообразных продуктов и в готовых изделиях появляются пузыри. Для стабилизации концевых групп предложены различные приемы обработки сополимера. Так, промытый и высущенный ири 150°С сополимер сплавляют на воздухе ири 350—400 °С в течение 0,15—30 ч [16]. После сплавления содержание летучих веществ в сополимере менее 0,2% [после 30 мин выдержки испытуемого образца при 380 °С в вакууме при остаточном давлении 1,33 кПа (10 мм рт. ст.)]. Концевые группы в полимерной цепи можно стабилизировать обработкой водяным паром [18], После такой термообработки сополимер содержит более стабильные концевые группы СИРг. Предложен сособ стабилизации сополимера ТФЭ — ГФП, содержащего карбоксильные концевые группы, обработкой сонолимера метиловым спиртом ири 65—200°С [18], в результате которой получают сополимер со стойкими метилэфирными концевыми группами, выдерживаю- [c.106]

    Фторангидридные группы в водной среде гидролизуются с образованием концевых карбоксильных групп, обусловливающих нестабильность сополимера. Введение агента переноса цепи при сополимеризации снилоет число концевых групп, приводящих к перегруппировке мономера ПВ(АВ)Эф, и способствует возникновению более термостойких гидридных концевых групп Ср2Н. Карбонат аммония повышает стойкость ПФ (АВ) Эф к гидролизу в водной основной среде [43]. Предложен также метод стабилизации концевых групп в сополимере обработкой метиловым спиртом при О—200°С с образованием стабильных простых эфирных групп [18]. [c.125]

    При суспензионной полимеризации для стабилизации суспензии применяют различные поверхностно-активные вещества, преимущественно водорастворимые соли акриловой и метакриловой кислот или их сополимеры. Полимеризацию проводят в эмалированных реакторах емкостью 1—6 м , снабженных мешалкой и рубашкой для надевания и охлаждения. По окончании полимеризации полученный полимер отделяют от жидкой фазы, промывают водой от стабилизатора и сушат в специальных сушилках. [c.228]

    Механизм образования и стабилизации частиц нри безэмульгаторной полимеризации в концентрированных эмульсиях исследован на примере сополимеризации гидрофобного мономера — бутилмет-акрилата (БМА) с ионизирующимся мономером—диметиламино-этилметакрилатом (ДМАЭМА) [102—104]. В табл. 3.4 приведены состав и свойства некоторых латексов этих сополимеров. [c.113]

    Метиленхлорид СНгСЬ (ГОСТ 9968—73). Получают хлорированием метана при 500—550°С в газовой фазе, хлорированием метилового спи-рта. Является хорошим растворителем жиров, масел, многих полимеров. Не растворяет политетрафторэтилен, сополимер гексафторпропилена и винилиденфторида [37, с. 92]. Разлагается на свету под действием УФ-лучей с образованием хлороводорода для стабилизации вводят уротропин или триэтаноламин. Трудногорючая [c.57]


Смотреть страницы где упоминается термин Сополимеры стабилизация: [c.393]    [c.74]    [c.520]    [c.86]    [c.724]    [c.203]    [c.323]    [c.165]    [c.67]    [c.36]    [c.943]    [c.220]   
Лакокрасочные покрытия (1968) -- [ c.447 ]




ПОИСК







© 2025 chem21.info Реклама на сайте