Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Металлы и сплавы кислотная

    Для коррозии металлов в кислых средах характерны свои особенности. Это прежде всего значительная зависимость скорости растворения металла от кислотности раствора. С уменьшением pH скорость коррозии в неокислительных кислотах возрастает. В подавляющем большинстве случаев скорость коррозии в кислых средах определяется реакцией (1.2), а благодаря большой подвижности ионов гидроксония практически не осложнена диффузионными затруднениями и протекает в чисто кинетической области. Это обуславливает, в сво(о очередь, несколько меньшую, чем для других видов коррозии, зависимость кислотной коррозии от перемешивания. Для многих металлов и сплавов продукты коррозии в кислых средах растворимы, что приводит к протеканию процесса с ускорением. Скорость коррозионного процесса на сталях и сплавах в кислых средах существенно зависит от их структуры, наличия примесей, дефектов, остаточных деформаций и т. п. И, наконец, коррозия в кислых средах, как правило, сопровождается поглощением металлом значительного количества водорода, что приводит к появлению водородной хрупкости. [c.12]


    Разложение металлов, сплавов, полупроводниковых и других материалов в сильной мере зависит от природы анализируемого материала. В подавляюш,ем большинстве используются методы кислотного разложения с учетом специфики растворяемого материала и возможности улетучивания мышьяка в впде трихлорида или арсина, а также в зависимости от последуюш,его метода отделения и определения мышьяка. [c.156]

    При анализе металлов, сплавов, концентратов и других продуктов металлургического производства используют различные варианты кислотного разложения, указанные в табл. 29. [c.169]

    Щелочные и щелочноземельные металлы подавляют кислотную функцию алюмоплатинового катализатора и нарушают селективность процесса. Более тяжелые металлы вступают во взаимодействие с платиной, образуя сплавы, каталитически неактивные в реакциях гидрирования-дегидрирования. Катализатор, отравленный металлами, быстро закоксовывается и после регенерации не восстанавливает своей активности. Особенно быстро отравляется платиновый катализатор при использовании в качестве сырья бензинов вторичных процессов, где концентрация неорганических примесей очень высока. [c.162]

    Металл или сплав Кислотность (в пересчете на НС1), % Температура, С Длительность испытаний. я Скорость коррозии, мм год [c.344]

    Металл или сплав Кислотность формаля 0,3% Кислотность формаля 1,7%  [c.348]

    Судя по свойствам свободных металлов и соответственных, даже весьма сложных, их соединений, Li, Na, К, Rb и s представляют несомненное химическое сходство одно то, что металлы легко разлагают воду, а их водные окиси RHO и углекислые соли R O растворимы в воде, тогда как водные окиси и углекислые соли всех почти других металлов нерастворимы в воде, убеждает в том, что названные металлы образуют естественную группу щелочных металлов. Галоиды и щелочные металлы составляют самые крайние по характеру элементы. Многие из прочих элементов суть металлы, приближающиеся к щелочным металлам, как по способности давать основания и соли, так и по отсутствию кислотных соединений, но они не столь энергичны, как щелочные металлы, т.-е. образуют основания менее энергические, чем щелочные металлы. Таковы, напр., обычные металлы серебро, железо, медь и др. Другие элементы приближаются по характеру своих соединений к галоидам и, подобно им, соединяются с водородом, но в таких соединениях нет энергического свойства галоидных кислот в отдельном виде они обыкновенно соединяются с металлами, но образуют с ними уже не столь солеобразные соединения, как галоиды, — словом, в них галоидные свойства выражены менее резко, чем в галоидах. К этим относятся, напр., сера, фосфор, мышьяк. Наиболее резкое различие свойств галоидов и щелочных металлов выражается в том, что первые дают кислоты и не образуют оснований, другие, обратно, дают только основания. Первые суть настоящие кислотные але-менты, вторые резкие основные или металлические элементы. Первые считаются теми химиками, которые в том или ином виде следуют за электрохимическим учением, типическими электроотрицательными элементами, вторые — образцом электроположительных. Соединяясь друг с другом, галоиды образуют в химическом отношении непрочные соединения, а щелочные металлы—сплавы, в которых характер металлов не изменился, [c.42]


    Рассматривается возможность применения для осветления никелевых сплавов кислотных растворов, используемых при щелочно-кислотной обработке металлов. Приводятся результаты осветления никелевых сплавов после их гидридной обработки в ряде растворов. Испытуемые растворы сравнивали по продолжительности обработки никелевых сплавов, количеству растворенного металла н визуальной оценке качества поверхности осветленной катанки. Катанку константана и копеля после осветления необходимо пассивировать. [c.106]

    Коррозионные свойства. Углеводородная часть современных нефтяных авиационных топлив практически не вызывает коррозии металлов и сплавов. Коррозионная агрессивность обусловливается главным образом присутствием в топливе таких веществ, как сера, сернистые соединения, органические кислоты, вода, азотистые соединения и др. Коррозионная агрессивность топлива зависит от его стабильности. Малостабильные топлива, как правило, более коррозионно активны. Коррозионные свойства оцениваются по следующим показателям испытанию на медной пластинке, количеству серы и сернистых соединений в топливе, органической кислотности. [c.31]

    Бензин прямой гонки при отсутствии воды практически не действует на технически важные металлы. Крекинг-бензины и сырые фенолы при взаимодействии со многими металлами (Ре, Си, Mg, РЬ, 2п) осмоляются, их кислотность повышается, что вызывает коррозию этих металлов. Устойчивы в крекинг-бензинах алюминий и его сплавы, а также коррозионностойкие стали. [c.142]

    Реакционная среда воздействует на состояние катализатора, изменяя его химический состав, структуру поверхности и каталитические свойства. Многочисленные экспериментальные данные, полученные для массивных и нанесенных металлов и сплавов, простых и сложных оксидов, катализаторов кислотно-основного действия и других [2], свидетельствуют о влиянии концентраций компонентов в реакционной смеси и температуры. [c.9]

    Методы переведения пробы в раствор или методы разложения пробы полностью зависят от состава анализируемого вещества. В общем можно отметить, что при анализе силикатов, горных пород, минералов, как правило, для разложения проб проводят щелочное сплавление, реже — спекание с карбонатом кальция, кислотное разложение в смесп кислот. При анализе металлов и сплавов проводят, как правило, кислотное разложение, иногда применяют другие методы разложения пробы. Например, при анализе алюминия пробу растворяют в растворе щелочи. Могут быть предложены и другие способы переведения пробы в раствор. В качестве примера выбора схемы анализа приведем схему анализа силиката. [c.641]

    Предлагаемый струйно-зонный метод коррозионных испытаний металла может быть использован не только для отработки режимов кислотных промывок, но и для решения исследовательских и практических задач по проверке коррозионной стойкости черных, цветных металлов и их сплавов и разработке средств противокоррозионной защиты в кислых и даже нейтральных и щелочных средах. [c.127]

    Химическому травлению подвергаются самые разнообразные по составу и назначению металлы и сплавы. В связи е различной природой и структурой окислов на разных металлах 154 56 162 178] и сплавах для их удаления приходится применять специальные кислотные растворы [50 65 73 144 148 165 183 247]. [c.58]

    При хранении топлив Т-1, ТС-1 в наземных резервуарах в течение 6—7 лет в северной зоне и в течение 4—5 лет в южной зоне изменение кислотности не превышает 0,8 мг КОН/100 мл топлива, содержание фактических смол — 7 мг/100 мл (табл. 37). Несколько интенсивнее накапливаются смолистые вещества при хранении дизельных топлив. В процессе хранения интенсивно идет накопление кислых смолистых веществ, десорбируемых ацетоном и этанолом. Эти данные относятся к хранению стандартных топлив при коэффициенте заполнения резервуаров 0,9. Топлива хранились без движения. На скорость образования смолистых веществ большое влияние оказывают вода, металлы, свет. Среди металлов наибольшее смолообразование вызывают медь и ее сплавы. Однако Б процессе хранения большие массы топлива с медью и с ее сплавами практически не контактируют. Нефтепродукты хранятся обычно в резервуарах из низкокачественных сталей, которые по сравнению со сплавами меди оказывают меньшее влияние на об- [c.90]

    Каталитическое ускорение окисления нефтепродуктов металлами приводит к образованию веществ, которые в свою очередь взаимодействуют с металлами. Так, сплав МА-5 корродирует под воздействием органических кислот значительно сильнее, чем сталь 20. Однако при испытании коррозионного действия гидрированного топлива на эти металлы оказалось, что сталь 20 корродировала сильнее сплава МА-5. Это объясняется тем, что в топливе Т-7, хранившемся в контакте со сплавом МА-5, кислотность за время хранения не изменилась, а после хранения в контакте со сталью, вследствие каталитического действия стали на процесс окисления, кислотность за 6 мес. возросла с 0,5 до 14,5 мг КОН/100 мл топлива. Нефтепродукты термического крекинга легче окисляются при хранении, поэтому они являются более коррозионно-активными по сравнению с продуктами прямой перегонки. В результате в присутствии крекинг-топлив довольно значительно корродируют медь, цинк и углеродистые стали  [c.117]


    Кислотная обработка меди и медных сплавов. Травление проводят 10—20%-ной серной кислотой в течение 20 мин при комнатной температуре. Следует помнить, что основной металл не должен затрагиваться. [c.305]

    Вяжущие материалы. Для защиты металлов и сплавов от коррозии широко применяют футеровку из вяжущих материалов, в основном силикатных цементов. В зависимости от преобладания кислотных или щело. иых оксидов вяжущие материалы могут об- [c.148]

    Металл или сплав Кислотность (в пересчете на H I), Температура, С Длительность испытаний. Скорость коррозии, мм1год [c.345]

    При использовании кислотность масел существенно возрастает и может достигать 2—2,5 мг КОН/г. Однако четкая зависимость между кислотностью масла и его коррозионной агрессивностью отсутствует, поскольку химическая активность кислот зависит от их состава и строения, температуры, присутствия воды и состава металла. Так, масла с кислотным числом до 1,5 мг КОН/г незначительно воздействуют на черные металлы в отсутствие воды, однако для свинцовистых подшипниковых сплавов недопустима кислотность, даже в 3 раза меньшая. Для цветных металлов наблюдается определенная связь между кислотным числом масла и его коррозионными свойствами. Различия в приросте кислотности масел при окислении связаны с их составом и действие л металла. Остаточные масла обычно менее коррозионно-апреосивны, чем дистиллятные. Данные о коррозионных свойствах некоторых моторных масел без присадок приведены далее  [c.36]

    Эксплуатационные испытания биоразлагаемых гидравлических масел на базе сложных эфиров показали возможность коррозионного износа деталей из сплавов, содержащих свинец, цинк и олово. Существенные потери массы металлов отмечены при испытании железных пластин со свинцовым, цинковым и оловянным покрытием в среде сложных эфиров триметилолпропана. Химический анализ образовавшегося осадка показал наличие свинцовых, цинковых и оловянных мыл жирных кислот. Ввод 1% карбодиимидов при 80°С резко снизил кислотное число и не привел к образованию нерастворимых осадков. [c.202]

    Свинец и его сплавы. Свинец обладает очень высокой сопротивляемостью действию коррозии в кислотной среде, и гальванические покрытия, получаемые из растворов кислых фторобо-ратов, фторосиликатов или сульфатов, используются для защиты черных металлов или сплавов на медной основе. [c.96]

    О влиянии состава раствора на растворение сплавов железа с хромом и никелем в активном состоянии данных в литературе почти нет, что затрудняет сопоставление ме-хазшзма их растворения с механизмами растворения индивидуальных металлов. Из зависимости стационарных потенциалов сплавов Г е—С г в сернокислых растворах от кислотности [47] следует, что растворение этих сплавов осуществляется без участия ионов 0Н в стадиях, определяющих скорость процесса. Можно, следовательно, сделать вывод о доминирующей роли хрома при растворении этих сплавов. С другой стороны, для тех же сплавов, со- [c.12]

    Разработана [29] фосфатирующая грунтовка АК-209 (бывшая ВГ-5), представляющая собой суспензию пигментов в растворе синтетических смол в смеси органических растворителей и в кислотном разбавителе. Грунтовка является однокомпонентной и предназначается для грунтования поверхностей алюминиевых сплавов, сталей, никелевых сплавов и других металлов, эксплуатируемых при температуре до 300 °С. Отличительной особенностью этой грунтовки является повышенная теплостойкость и высокие защитные свойства. Системы покрытий с крем-нийорганическими эмалями КО-88 и КО-811 по грунтовке [c.151]

    Определение. Качественно Р. обнаруживают в виде HgjNH2 l, HgS, а также атомно-абсорбционным, эмиссионным спектральным, фотометрич. и др. методами. Гравиметрически Р. определяют в виде металла, HgS, Hg2 l2, перйодата Hg5(IOg)2. Пробу руды разлагают при нагр., Р. отгоняется в присут. восстановителя (порошок Fe илн Си) под шубой из ZnO. Образующуюся Р. собирают на холодной золотой пластинке, к-рую по окончании анализа промывают и взвешивают. При низком содержании Р. в рудах используют кислотное разложение руд с добавлением фторида для растворения кварца и силикатов, содержащих Р. в высокодисперсном состоянии затем проводят концентрирование путем отделения примесей др. элементов экстракцией разл. комплексных соединений Р. (галогенидов, роданидов, дитиокарбаматов и др.). При прокаливании и сплав-ле.нии рудных концентратов и соединений Р. с содой Р. полностью удаляется в виде металла. Для подготовки аналит. пробы используют сочетание экстракции с термич. восстановлением и отгонкой Р. подготовленную пробу можно анализировать любым из перечисленных выше методов. Термич. восстановление используют также для качеств, обнаружения Р. даже при низких ее концентрациях. При фотометрич. определении Р. в качестве реактива используют 1-(2-пиридилазо)-2-нафтол, позволяющий определять микрограммовые кол-ва. Следы Р. также м. б. определены при помощи дитизона, используемого как гри фотометрич., так и при титриметрич. определении. [c.279]

    По данным этих авторов, из 9 М НС1 не сорбируются (Кр< 2) А1. Мп(П), Сг(1П), N1 (II), V (IV), Т1 (III), Т1 (V), ТЬ, Mg, рзэ, Ве и РЬ. Таким образом, из 9 М НС1 от алюминия могут быть отделены почти все металлы, содержащиеся в сплавах Ре, Си, и, 5п и РЬ и мешающие определению алюминия с алюминоном. Возможности разделения расширяются, если раствор пропускать через анионит дважды при различных кислотностях. Так, свинец из 9 М НС1 не сорбируется, но сильно поглощается 2 М НС1. Поэтому Хортон и Томасон [8191 после пропускания раствора 9 М поНС1 через анионит предлагают снизить кислотность элюата до 2 М НС1 и пропустить через другую колонку с анионитом. [c.186]

    Ниобий Nb (лат. Niobium, старое название колумбий, СЬ). Н.— элемент V группы 5-го периода периодич. системы Д. И. Менделеева, п. н. 41, атомная масса 92,906. Имеет один стабильный изотоп Nb. Открыт в 1801 г. Ч. Хатчетом. В природе встречается в минералах совместно с танталом. Н.— светло-серый тугоплавкий металл, на воздухе устойчив. По химическим свойствам близок к танталу (отсюда название в честь древнегреческой богини Ниобеи—дочери Тантала). Проявляет в наиболее устойчивых соединениях степень окисления +5. В кислотах, за исключением плавиковой, нерастворим. Оксид ниобия NbaOs имеет кислотный характер. Н.—один из главных компонентов многих жаропрочных и коррозионно-стойких сплавов. Основные области применения Н. и его сплавов — атомная энергетика, радиоэлектроника и химическое аппаратостроение, реактивные двигатели и ракеты, вакуумная техника. [c.90]

    Рений Re (лат. Rhenium, от названия Рейнской области). Р.— элемент VII группы 6-го периода периодич. системы Д. И. Менделеева, п. и. 75, атомная масса 186,2. Природный Р. состоит из одного стабильного изо. опа Re и слаборадиоактивного 8 Re. Существование Р. (как эка-марганца ) было предсказано Д. И. Менделеевым. Открыт Р. был в 1925 г. В. и И. Ноддак. Основным природным источником Р. служат молибдениты. Р.— тугоплавкий серебристо-белый металл, обладает высокой коррозионной стойкостью. Р. проявляет различные степени окисления. Наиболее характерны и устойчивы соединения Re-l" . Оксид рения ReaO обладает кислотными свойствами. Сплавы Р. применяют в Электротехнике, авиационной промышленности, ракетостроении. Р. используют для антикоррозионных покрытий, в вакуумной технике, как катализатор. [c.113]

    На кафедре химии Омского педагогического института на основе отходов и полупродуктов нефтехимии разработаны ингибиторы кислотной коррозии и наводороживания черных и ряда цветных металлов серии ОНИ (полимеры дигидрохи-нолина), СОД (полимерные соли пиридиния) и ИН (продукты аминирования альдегидов). Установлено, что ингибиторы серии ОНИ и СОД при содержании до 3,5 г/л эффективно защищают железо и его сплавы в растворах соляной и серной кислот в широком интервале концентраций и температур, при этом СКЗ их достигает 90...99 %, увеличиваясь с повышением температуры. Ингибиторы серии ИН показали высокое защитное действие в растворе соляной кислоты и слабокислых растворов, содержащих нефтепродукты [7]. [c.237]

    Определение при помощи метилового голубого [265]. Соединение экстрагируется на 88—98% хлорбензолом, хлороформом, смесью бензола с нитробензолом, кетонами и дихлорэтаном. Максимумы светопоглощения экстрактов лежат при 664—674 нм, 8 = (5,5—8,8)-10 . Оптимальная кислотность водной фазы — 0,1—Э H2SO4. Не мешают ионы Си, Hg(II), Zn, d, Со, Ni, Mn, r(III), Fe(III), Bi, Pb, Te(IV), Se(IV), 20—40-кратные количества платиновых металлов. Реагент применяют для концентрирования золота и его определения в воде и сплавах с платиновыми металлами. [c.157]

    Как видно из табл. 2.3 и 2.4, плотности тока обмена восстановления Кислорода значительно ниже плотностей тока обмена ионизации водорода и предельных диффузионных плотностей тока кислорода. Поэтому выбор активного катализатора кислородного электрода для ТЭ исключительно важен. Катализ 1то-рами Кислородных электродов в щелочных растворах служат платина и палладий, их сплавы и серебро, а также активированный уголь. Каталитическую активность угля можно повысить введением оксидов некоторых металлов, например шпинелей №Со204,СоА1204,МпСо204 [10, с. 161 35, с. 131, 144, 145]. При температурах 200 С и выше активен литированный оксид никеля [7]. Катализаторами кислородного электрода в кислотных электролитах служат платина и ее сплавы и активированный уголь. Предложены также органические катализаторы - фтало-цианины и порфирины кобальта и железа, нанесенные на углеродистую основу [10, с. 161 11 47 66, с.60]. С помощью термообработки удалось значительно повысить их стабильность [11, 47]. Воздушные электроды, содержащие термически обработанные Органические комплексы, устойчиво работали при плотности тока 300 А/м свыше 3000 ч (9 10 А ч/м ) - [78, с. 157].,  [c.70]


Смотреть страницы где упоминается термин Металлы и сплавы кислотная: [c.4]    [c.110]    [c.66]    [c.142]    [c.120]    [c.70]    [c.88]    [c.153]    [c.175]    [c.213]    [c.18]    [c.78]    [c.93]    [c.691]    [c.352]    [c.113]    [c.353]    [c.204]    [c.238]   
Защита промышленных зданий и сооружений от коррозии в химических производствах (1969) -- [ c.142 ]




ПОИСК





Смотрите так же термины и статьи:

Металлы кислотная

Металлы сплавы

Сплавы и металлы металлов



© 2025 chem21.info Реклама на сайте